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Abstract Nearly two decades of research in the area of Inductive Logic Programming (ILP)
have seen steady progress in clarifying its theoretical foundations and regular demonstra-
tions of its applicability to complex problems in very diverse domains. These results are
necessary, but not sufficient, for ILP to be adopted as a tool for data analysis in an era of
very large machine-generated scientific and industrial datasets, accompanied by programs
that provide ready access to complex relational information in machine-readable forms (on-
tologies, parsers, and so on). Besides the usual issues about the ease of use, ILP is now
confronted with questions of implementation. We are concerned here with two of these,
namely: can an ILP system construct models efficiently when (a) Dataset sizes are too large
to fit in the memory of a single machine; and (b) Search space sizes becomes prohibitively
large to explore using a single machine. In this paper, we examine the applicability to ILP
of a popular distributed computing approach that provides a uniform way for performing
data and task parallel computations in ILP. The MapReduce programming model allows, in
principle, very large numbers of processors to be used without any special understanding of
the underlying hardware or software involved. Specifically, we show how the MapReduce
approach can be used to perform the coverage-test that is at the heart of many ILP systems,
and to perform multiple searches required by a greedy set-covering algorithm used by some
popular ILP systems. Our principal findings with synthetic and real-world datasets for both
data and task parallelism are these: (a) Ignoring overheads, the time to perform the compu-
tations concurrently increases with the size of the dataset for data parallelism and with the
size of the search space for task parallelism. For data parallelism this increase is roughly in
proportion to increases in dataset size; (b) If a MapReduce implementation is used as part of
an ILP system, then benefits for data parallelism can only be expected above some minimal
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dataset size, and for task parallelism can only be expected above some minimal search-space
size; and (c) The MapReduce approach appears better suited to exploit data-parallelism in
ILP.

Keywords ILP · MapReduce · Parallelism · Scaling-up

1 Introduction

As is the case with any engineering discipline, it is useful to classify research in the area
of Inductive Logic Programming (ILP) broadly into conceptual, implementation, and appli-
cation categories. The nomenclature of the first and last suggests their purpose: conceptual
research is concerned with the development of the abstract, formal basis for the field; and
application research is concerned with establishing its experimental, or empirical results.
Working lockstep since 1991, ILP research in these two categories have been used to ad-
vance a scientific case for the role of first-order learning in constructing models for data in
complex domains. The rapid growth and size of machine-generated scientific and industrial
databases, along with the availability of information in an electronic form of complex re-
lations (from ontologies, parsers, and so on) have, however turned the spotlight onto ILP
implementations. The question confronting ILP is now not a scientific one of whether ILP
is applicable to the analysis of such data—let us accept, for the moment that the framework
is sufficiently powerful for this to be so—but whether an ILP tool can actually perform such
an analysis efficiently. Here are some examples of the growth of data in some prominent
application areas:

Biology. Automated genome sequencing techniques have made available millions of nu-
cleotide sequences comprising entire genomes of organisms, that is increasing at an
extremely rapid rate. The number of sequences in one of the three primary sources of
such data, GenBank, (from the U.S. NIH) is about 100 million (containing about 100
billion base-pairs, or 25 gigabytes of data). These are now augmented by taxonomic
databases, protein sequence databases, gene expression data from microarray experi-
ments, metabolic pathway data and so on. The emerging field of Integrative Biology
aims to use all these different sources of information to construct models for entire bio-
logical systems.

Text. It is now believed that a majority of data stored in organisations will be in the form of
unstructured data (that is, data that do not have a data model in the conventional database
sense of the term), much of it in the form of text. Estimates put this data as comprising
up to 80% of an organisation’s data volume, amounting to several terabytes of data each
year. Clearly not all of this is useful, but it is there and in such large amounts and is a
challenge for any analysis method devised to extract information.

Telecommunications. Telecommunication companies are facing significant data analysis
challenges as they increase the number and types of services they provide. Data stored
from telephone calls (“call data records” or CDRs) for an organisation can be nearly a
terabyte a day, and have to be stored for months or years together to meet governmen-
tal regulations. Analysis techniques will thus have to be able to handle 10s to 100s of
terabytes of data.

The immediate implication for data analysis tools, including ones in ILP, is that they have
to have some mechanism for dealing with data volumes that range from 10s of megabytes
at present, to 1000s of megabytes or more in the future. Along with this increase in data
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Fig. 1 Parallel computation
using the MapReduce model

volume, is the availability in an electronic form of diverse kinds of information that may be
potentially relevant for analysis. An ILP system applied to text analysis now has access to
semantic lexicons like Wordnet (Miller et al. 1990), dictionaries, parsers, grammars and so
on (Specia et al. 2007). These sources of information increase the size of the search space
for an ILP system

Our interest in this paper is to examine the following question: is there a single, simple
approach to perform effective data and task parallel computation in ILP? By “single” we
mean that the same conceptual approach can be used for both kinds of parallelisation, and
by “simple” we mean that the ILP system developer can use the approach with practically no
knowledge of the underlying hardware, or of a number of book-keeping details associated
with distributed computing.

Recently, an extremely simple parallel computing approach has been found to have ap-
plications to a wide-range of data-intensive tasks (Dean and Ghemawat 2008), including
several propositional machine learning techniques (Chu et al. 2006). Although lacking the
sophistication of an RDBMS, the so-called “MapReduce programming model” or “MapRe-
duce framework” allows the analysis of very large datasets in a massively parallel manner.
The system builder concentrates only on the logical definition of two functions map and
reduce, loosely motivated by counterparts from functional programming. Once these func-
tions are defined, the implementation uses the former to compute, concurrently, values for
each data item; and the latter to “reduce” the values computed by the concurrent “maps”
to a single value. The architecture of a system using the MapReduce programming model
is broadly as shown in Fig. 1. We refer to a specific implementation of this programming
model as a MapReduce implementation. There are several MapReduce implementations
available such as Twister,1 GridGain2 and Hadoop.3 These implementations differ in spe-
cific infrastructure that is supported by them. Recently a high level programming interface
called SAGA has been proposed that provides the ability to create a MapReduce application
in an infrastructure independent way (Miceli et al. 2009).

In this paper, we investigate the use of a popular MapReduce implementation (Hadoop:
http://hadoop.apache.org/) by a well-known ILP engine (Aleph: Srinivasan 1999) to con-
struct clauses. We examine its use in data parallelism using synthetic and real-world datasets
that range from 10s of thousands to millions of data items. Our intent in these experiments
is two-fold: (1) To investigate the performance of the MapReduce approach to evaluate

1http://www.iterativemapreduce.org/.
2http://www.gridgain.com/.
3http://hadoop.apache.org/.

http://hadoop.apache.org/
http://www.iterativemapreduce.org/
http://www.gridgain.com/
http://hadoop.apache.org/
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clause utility as dataset size increases; and (2) To examine whether an ILP engine coupled
with a MapReduce implementation can be used to evaluate clauses efficiently on very large
datasets. For task parallelism, again using synthetic and real-world datasets with search-
space size ranging from 10s of thousands to millions we examine the scaling performance
of the ILP-MapReduce combination, and the efficiency of using the combination to search
the space completely (but not exhaustively). In both cases, “efficiency” will be measured
against performing the corresponding activity sequentially (on a single fast processor).

It is relevant to ask why ILP should be concerned with MapReduce. Two general rea-
sons have already been mentioned, namely: the widespread application of the MapReduce
model to very large datasets, and the abstraction (and, as will be seen later, the use of poly-
morphism) of a range of parallel computation tasks by definitions of two simple functions.
To these, we add a third, namely, the recent demonstration that the MapReduce approach
can be used by wide range of propositional learning algorithms (Chu et al. 2006). There are
significant differences between propositional learning and ILP—the incorporation of multi-
relational background knowledge, and the inter-dependence of examples are two important
ones—making it unclear whether the advantages of using MapReduce in propositional learn-
ing carry over to the first-order setting. It is the intent of experiments here to shed some light
on this.

The rest of the paper is organised as follows. In Sect. 2, we discuss some background
material and related work. In Sect. 3, we provide logical definitions of map and reduce
functions and discuss the effectiveness of the MapReduce approach under different scenar-
ios. In Sect. 4, we describe a MapReduce implementation for both data and task parallelism.
We discuss empirical evaluation of our proposed MapReduce implementations in Sect. 5
and present concluding remarks in Sect. 6. Finally, we provide details on some other ways
of using MapReduce in ILP in the Appendix.

2 Background and related work

2.1 Clause-set identification with ILP

In this paper we focus on ILP systems that are concerned with identifying a set of clauses,
although the techniques we develop are applicable to other kinds of ILP systems. We use a
variant to the partial specification provided by Muggleton (1994) in which we seek to iden-
tify, using a cost function, clauses that entail a set of examples. More formally, given some
language L; a set of clauses representing background knowledge B; examples E consisting
of some non-empty subset of “positive” examples E+ ⊆ E s.t. B �|� E+; a cost function f

that returns the cost of a clause, given B and E; we want to identify a set of clauses H

such that for each ei ∈ E+, there is an hi ∈ H s.t. B ∪ {hi} |� ei . A greedy procedure for
this is in Fig. 2. We note that at least two modifications are needed to realise a practical
implementation: (1) Deciding logical entailment is hard, and some simpler relation has to
be used in its place; and (2) The search procedure may not examine all clauses satisfying
even this simpler relation. ILP implementations usually opt for the relation of subsumption
in the sense described by Plotkin (1971), which ensures that clauses found still satisfy the
entailment requirement. Complete search of the set of clauses subsuming an example, given
B may also not be tractable, and search in Step 1 is restricted to some maximum size k. It
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ilp(B,E,f ): Given background knowledge B; examples E with positive examples E+ ⊆ E

and B �|� E+; and a real-valued cost function f , return a set of clauses H such that for each
ei ∈ E+, ∃hi ∈ H s.t. B ∪ {hi} |� ei .

1. i := 1
2. H0 := ∅
3. E− := E − E+
4. E+

0 := E+
5. E0 := E+

0 ∪ E−
6. while (E+

i−1 �= ∅)

7. begin
(a) Let Si = {hj : for each ej ∈ E+

j
hj = search(ej ,B,Ei−1, f )}

(b) Let hi ∈ Si be a minimal cost clause in Si . That is, hi = min
h∈Si

f (h,B,Ei−1)

(c) Hi = Hi−1 ∪ {hi}
(d) Ei

+ = E+
i−1 − {ei : ei ∈ E+

i−1 and B ∪ {hi} |� ei}
(e) Ei = E+

i
∪ E−

(f) increment i

8. end
9. return Hi−1

Fig. 2 A greedy procedure to identify clauses which entail a set of examples E+. In Step 7a
search(ej ,B,Ei−1, f ) returns a minimal cost clause h s.t. B ∧ h |� e. On each iteration, each example

not yet entailed (the set E+
i−1 in Step 7a is used to find a clause that entails it using a procedure search. The

clause with the lowest cost is selected, the examples it entails are removed, and the procedure iterates

is not hard to see that even with this restriction, if |E+| = N , then the number of clauses
examined by the procedure is still O(N2).4

The cost function f (hi,B,E) returns some estimate of the utility of the element hi . For
reasons that will become apparent shortly, we are especially interested in the case when f is
data-decomposable in the following sense. Suppose the sets E1,E2, . . . ,En be any partition
of the examples E. Then, for h ∈ H, by “f is data-decomposable” we will mean f (h,B,E)

is some function of Φ(g(h,B,E1), g(h,B,E2), . . . , g(h,B,En)), where Φ is a function
denoting the iterated operation of a binary function φ defined on the g(h,B,Ei). An exam-
ple of φ is the binary addition function +. Φ would then compute

∑n

i=1 g(h,B,Ei), and f

would be some function of
∑n

i=1 g(h,B,Ei).
At this point in the paper, we note that the dominant flavours of ILP—“learning from

interpretations” and “learning from entailment”—differ in at least one important way. In the
former, examples are sets of statements that are independent of each other (technically, each
example is a Herbrand interpretation containing all ground facts that are true for a particular
object). An example in the learning from entailment setting is a statement (usually a ground
fact) about one or more objects that may be related to each other and to objects in other
examples given the background knowledge B . As we shall see, this possible dependence of
examples requires some attention before using the MapReduce framework.

4On each iteration i > 0, the greedy procedure described here first finds the set Si of minimal-cost clauses
possible with each e ∈ Ei−1+ and then selects the best (that is, lowest cost) amongst this set. An ILP system
like Progol uses a randomised variant of this procedure, in which Si is restricted to a singleton set by first
randomly selecting a single example from E+

i−1. This makes the procedure O(N), but clearly clause-set
identified will vary with repetitions of the procedure.



146 Mach Learn (2012) 86:141–168

2.2 Scaling-up ILP

We are concerned with using techniques that allow ILP systems to deal with very large
datasets and search spaces. In this paper, large datasets will mean that the set of examples
E given to an ILP system is usually too large to store in a single machine’s memory. Large
search spaces will mean that it will require excessive amounts of time to explore the space
of possible clauses for identifying a low-cost set of clauses, even using a greedy procedure
such as the one in Fig. 2.

It would appear that sampling theory provides adequate machinery to address issues of
dealing with large datasets and search spaces, and their use has appeared in the ILP literature
for both the problems (Srinivasan 1999, 2000; Cardoso and Zaverucha 2006; Zelezny et al.
2002). Recently, sampling based methods have also been proposed for scaling relational
algorithms for multi-level frequent pattern discovery (Appice et al. 2010). Despite these
efforts, there are some reasons to investigate methods that handle each of these problems
exactly. First, some ILP procedures, like those concerned with finding first-order association
rules, are formulated over the entire data. Secondly, sampling guarantees often only hold if
the samples drawn satisfy some constraints: for example, of being the result of uniform
random sampling of all of the data or the hypothesis space. This cannot always be ensured.
So what has been done so far, without resorting to sampling? The answers lie in overall size
reduction, or concurrent computation (parallelisation).

Parallel computation using some ad hoc partitioning of the entire data was first investi-
gated (Wang and Skillicorn 2000) with a variant in Fonseca et al. (2008), but the results are
not guaranteed to be the same as using all of the data. Provided the limitations imposed by
Datalog are acceptable, the natural approach for an ILP system to address exact computa-
tions with large datasets is to store the data in a relational database (Ho et al. 2005). The
principal difficulty is that it requires a substantial understanding of the relational database
management system (RDBMS). Specifically, much depends on devising appropriate data
indexing and partitioning. Exact data-parallel computation for the task of determining first-
order association rules has been addressed in Clare and King (2003). This can be seen as
a special case of the MapReduce approach we examine in this paper, in which the authors
have developed special-purpose software specifically for the purpose of learning association
rules by distributed processing of the example data by several worker nodes (“mappers” in
the MapReduce context), and collating their results (“reducer” in MapReduce). Clearly, with
the advent of general-purpose MapReduce software, this becomes unnecessary.

A survey and empirical investigation of exploiting data and task parallelism in several
existing ILP techniques on some real-world datasets was conducted in Fonseca et al. (2008).
In this, the authors describe three kinds of concurrent computation in ILP namely: search,
data and evaluation parallelisation. For each of these three categories, different methods for
concurrent computation were used along with the MPI message-passing communications
protocol to communicate between several machines. In order to understand these results in
the context of this paper, we first clarify that the terminology of data and task parallelisation
of this paper is to be understood in the manner employed by general-purpose parallel compu-
tation. Search-parallelism in Fonseca et al. (2008) is thus a form of task parallelism here. But
Fonseca’s data-parallelism (concurrent identification of clause-sets using subsets of data)
and evaluation-parallelism (concurrent computation of the examples entailed by a clause)
are characterised as data parallelism here as they both involve concurrent computation over
data instances. Thus, the results in Fonseca et al. (2008) can be re-phrased as follows: task
parallelism is effective, but data parallelism, when used for clause evaluation, is not. These
results should be assessed with the following caveats. First, experiments were conducted
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only on datasets of very moderate data sizes. Secondly, although the MPI protocol has be-
come a kind of de facto standard for communication between multiple machines, its use
in ILP requires either that ILP systems provide libraries for using the protocol, or the user
requires some knowledge of the procedures provided by the interface. Finally, although not
especially serious, there was no single conceptual basis for data and task parallelism. That
is, different procedures have to be developed specifically for each kind of parallelism.

On the question of complete (but not necessarily exhaustive) exploration of large search
spaces, techniques have been proposed that search through hypotheses spaces partitioned
using some syntactic measure (for example, the number of occurrences of a predicate sym-
bol in any hypothesised clause (Camacho 1994) or a “language-number” in De Raedt and
Bruynooghe (1991)). The principal difficulty here, of course, is the need for coming up
with a way of meaningfully partitioning the hypothesis space. If complete exploration of
the search space is not required, then a range of heuristics that examine smaller portions
of the search-space are available. These include techniques like the greedy search methods
employed by Quinlan (1990) and Blockeel and De Raedt (1998), the use of negative exam-
ples to reduce the search-space (first reported in Muggleton and Feng (1990)), and the use
of statistical techniques for dimensionality reduction (Srinivasan and Kothari 2005).

2.3 Scaling-up propositional learning using MapReduce

The use of the MapReduce framework for data paralleisation for propositional machine
learning algorithms has been examined in Chu et al. (2006). They show that the algorithms
that fit the statistical query model (Kearns 1998) can be written in a certain “summation
form” which can easily be exploited by the MapReduce framework.5 They show linear speed
up with number of cores for several machine learning algorithms such as k-means, logistic
regression and SVM by using the MapReduce framework. ILP does not necessarily satisfy
an important requirement of the approach in Chu et al. (2006), namely that data instances
used for learning are independent of each other. As we mentioned earlier, this does not hold
when learning from entailment.

To the best of our knowledge, there has been no work done on using MapReduce for task
parallelisation of propositional learning algorithms. To some extent, this is not surprising
since scaling-up in learning algorithms of this kind has largely come to mean handling very
large datasets. An additional dimension of complexity is added with ILP, in which model
construction can also involve independent searches through very large search spaces. In this
paper, we show that such tasks can be executed in parallel by the MapReduce framework.

3 map, reduce and MapReduce

In this section, we provide logic programming definitions of the basic relations underlying
the MapReduce approach. We note that a reconstruction using functional programming of
MapReduce is available in Lämmel (2007). Nevertheless, the logic-based approach here is
probably more familiar to the ILP-oriented reader: at any rate, no such description exists in
the literature.

5The original motivation of the statistical query model in Kearns (1998), namely a framework for learning
with noise using an oracle that returns a probability distribution over classes is not the important feature
here. Rather, it is the fact that the utility of a model can be evaluated by summing over its performance over
individual data items that is relevant, since this can be computed independently by mappers in the MapReduce
setting.
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% map: ((∗ → ∗∗) × [∗]) → [∗∗] % reduce: ((∗ × ∗ → ∗) × [∗] × ∗) → ∗
map(_F, [], []). reduce(F, [],X0):-

identity(F,X0).
map(F, [X|Xs], [FX|FXs]):- reduce(F, [X|Xs],R):-

apply(F,X,FX), reduce(F,Xs,R0),
map(F,Xs,FXs). apply(F,X,FX),

apply(FX,R0,R).

Fig. 3 Logical definitions of the higher-order functions map and reduce available with most functional pro-
gramming languages. The definitions are in the Prolog language, which is untyped—the intended types of the
functions are shown here as a comment (the line following the “%” sign). We assume here that the function
F provided as an argument to reduce/3 is a binary associative function with a unique identity element. This
element is returned by identity/2. apply/3 takes a function F and an argument X and returns the functional
term FX. For example, an implementation of this for the “squaring” function may be: apply(sqr,X, sqr(X)).
Multiple calls to apply/3 (as in the definition of reduce/3 above) simply achieves the equivalent of currying
in functional programming

As is done in Lämmel (2007), we distinguish between the map and reduce higher-order
functions of functional programming, and their recent incarnation within the MapReduce
programming approach for data parallel computing (Dean and Ghemawat 2008). In the for-
mer, map is higher-order function that takes two arguments: a function, of type x → y and
a list of x values, and returns a list of y values (the names x and y are arbitrary). reduce
is a special case of a generic fold function that represents an iterated binary operation. For
simplicity, we will assume here that the binary operation employed by reduce is associative
and has a unique identity element (neither of these constraints are necessary for the general
fold operation). reduce takes two arguments: a binary function defined on arguments of type
x, a list of x values. The result is of type x. Example definitions of these two higher-order
functions in the Prolog language are shown in Fig. 3 (these follow Naish and Sterling 2000).

Thus, map essentially applies a function to a list of values, and reduce computes a sin-
gle value from a list of values. Ensuring appropriate type constraints are satisfied, we can
therefore construct a new function that is the composition that “map’s” a function to a list of
values, and reduces this list to a single value. Further, unfolding the definition for map above,
it is evident that the computation performed by map is logically equivalent to a conjunction
of apply/3 calls. As long as the definition of apply/3 has no side-effects, it has been long un-
derstood that this conjunction can be evaluated concurrently. These two aspects—function
composition and concurrent mapping—form the inspiration for the MapReduce procedure
for distributed computing described in Dean and Ghemawat (2008).

Logically, the description of MapReduce in Dean and Ghemawat (2008) involves
functions that have more complex type-definitions than the map and reduce we have
just considered. In addition, the final computation is not just a composition of two,
but three functions: we direct the reader to Lämmel (2007) for a reverse-engineering
of Dean and Ghemawat (2008), that performs a plausible discovery of the types of
the functions, and their definitions. We are concerned here with specialised variants of
these functions. For the purposes of the paper, we will use the term “dictionary item”
to mean a (dictionary_key,dictionary_value) pair, and a “dictionary entry” to mean a
(dictionary_key, list_of _dictionary_values) pair. A “dictionary” will simply be a list of dic-
tionary entries. The function definition mapwithkey is identical to map, with differences
being in the types of the arguments. The function passed as argument deals with dictionary
items, and has type (k1, v1) → (k1, v2). mapwithkey uses this function to map a list of dic-
tionary items into another such list. We will simply pass the function provided to mapwithkey
as an argument to the map function and assume that the difference in types can be handled
by appropriate modification of the apply/3 function. The function reducebykey operates on
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% mapreduce: (((∗,∗∗) → (∗,∗ ∗ ∗)) × (∗ ∗ ∗ × ∗ ∗ ∗ → ∗ ∗ ∗) × [(∗,∗∗)]) → [(∗, [∗ ∗ ∗])]
mapreduce(MapFn,ReduceFn,DictItems,Result):-

mapwithkey(MapFn,DictItems,NewItems),
groupbykey(NewItems, [],Dictionary),
reducebykey(ReduceFn,Dictionary,Result).

% mapwithkey: (((∗,∗∗) → (∗,∗ ∗ ∗)) × [(∗,∗∗)]) → [(∗,∗ ∗ ∗)]
% reducebykey: ((∗ × ∗ → ∗) × [(∗∗, [∗])] → [(∗∗, [∗])]
mapwithkey(F,DictItems,Result):- reducebykey(_F, [], []).

map(F,DictItems,Result). reducebykey(F, [(K,V s)|KV s], [(K, [R])|Rs]):-
reduce(F,V s,R),
reducebykey(F,KV s,Rs).

% groupbykey: ([(∗,∗∗)] × [(∗, [∗∗])] → [(∗, [∗∗])]
groupbykey([],D,D).
groupbykey([(K,V )|Items],D,Dictionary):-

insertdict((K,V ),D,D1),
groupbykey(Items,D1,Dictionary).

Fig. 4 Logical definition of a map-reduce implementation

an entire dictionary. The list of dictionary values for each key in the dictionary is reduced
to a single one by an application of the function reduce (given earlier). We need one addi-
tional helper function, groupbykey that inserts the dictionary items from mapwithkey into an
existing (possibly empty) dictionary. The result is used by reducebykey. Prolog definitions
of these three functions are shown in Fig. 4, along with the composition mapreduce (we do
not show the functions needed for dictionary manipulations).

We note that the MapReduce implementation described in Dean and Ghemawat (2008)
and the one used by us (Hadoop) are both more general than the definition in Fig. 4. The prin-
cipal restrictions in the latter are: (a) mapwithkey returns dictionary items with the same keys
as its input (the implementation in Dean and Ghemawat (2008) does not require this); and
(b) reducebykey returns dictionary entries which have lists with a single value for each key
(the implementation allows a set of values). Thus, all computations performed by mapreduce
in Fig. 4 can be performed by the implementation.6

3.1 Effectiveness of the MapReduce approach

Let us distinguish first between the computation that can be done in parallel by the map-
pers in a MapReduce implementation, and the computation that needs to be done serially.
We adopt the terminology of Shi (1996) for the following: ts , the processing time, ignor-
ing overheads, for the serial part (on a single processor), and tp(P,M), the processing time
of the parallel part, including overheads, on P processors using M mappers. Further, by
convention, we take tp(1,0) to be the time taken to perform the parallel part on a single pro-
cessor without any overheads for parallelisation. Thus, T (1,0) = ts + tp(1,0), will be the
total processing time of both parts using a single processor without using a MapReduce im-
plementation, which for this paper will simply mean the ILP engine in isolation. T (P,M),

6But the converse is not true, because of the use of multiple keys allowed by the implementations. The
reader may be concerned that this does not conform to the relationship required in Hoare (1993) between a
specification S and an implementation I (namely, I |� S). mapreduce thus does not constitute a specification
of the implementation in Dean and Ghemawat (2008) or of Hadoop. Nevertheless, it is sufficient for our
purposes that mapreduce can be implemented correctly by these programs.
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is the same quantity with the ILP engine using a MapReduce implementation with access to
P processors and M mappers. We are interested in estimating the speedup S = T (1,0)

T (P,M)
.

Let us assume that the P processors perform the parallel computation by executing the
M mappers concurrently, and that M is sufficient to perform the parallel computation. Let
r1, r2, . . . , rM be the processing time required by each of the M mappers. Then, ignoring
overheads of using a MapReduce implementation, tp(1,0) = ∑M

i=1 ri . Without loss of gen-
erality, let us take the ri to be in non-decreasing order. That is, rM = max(r1, r2, . . . , rM).

Assuming that ts is unaffected by the use of a single or multiple processors, S = ts+∑M
i=1 ri

ts+rM
.

If ts � rM , then we are able to simplify this further to S = 1 +
∑M−1

i=1 ri

rM
. Since

∑M−1
i=1 ri <

(M − 1)rM , it is evident that we will always get sublinear speedups, with high values being
obtained when r1, . . . , rm are roughly equal to each other. Lower values follow, on the other
hand, if one of the processors starts to take disproportionately longer time than the others.
For example, if rM = 2rM−1, then S < M/2. We would therefore expect the MapReduce
implementation to be effective under the following circumstances: (a) reduction time is neg-
ligible (ts is small compared to tp(P,M)); and (b) mapper times are roughly comparable
(tp(P,M) is not dominated by a single value).

In practice, even if these conditions are satisfied, speedups will be reduced by overheads
of three kinds: (1) Resource files needed for the parallel computation will have to be dis-
tributed to each of the P processors. This is proportional to the number of P ; (2) It will
not always be possible to execute all the M mappers required concurrently. For example,
if the processors are only able to execute m mappers at once, although rM will remain the
same, in the MapReduce implementation M mappers are executed by multiple (serial) in-
vocations of m concurrent mappers. The associated overheads is dependent on the number
of invocations M/m, which is proportional to M for a fixed m; and (3) Additional book-
keeping is needed prior to the sequential computation required by the reducer to collect
results from each of the mappers. This is usually a sort operation that is proportional to
M log(M). Thus, tp(P,M) ≈ rM + k1P + k2M + k3M log(M). More generally, we expect
tp(P,M) = rM + to(P ,M), where to(P ,M) increases with increase in P or M . This way of
decomposing the total computation time of a job in a MapReduce implementation is similar
to Miceli et al. (2009).

4 Parallel computation in ILP using MapReduce

We are now in a position to examine the use of the MapReduce approach of Dean and
Ghemawat (2008)—as defined by the mapreduce function in Fig. 4—in ILP. Using Fig. 2
as a template, there are at least two areas where this can be used: (1) Task parallelism,
by performing the different search calls in Step 7a concurrently using all of the data; and
(2) Data parallelism, by performing concurrent cost computations within any one search
call in Step 7a, using subsets of the data. We consider these in reverse order, since the
MapReduce approach has largely been devised for data parallel computation. In both cases,
the architecture used for the hybrid ILP-MapReduce engine will be identical, as shown in
Fig. 5. What will be different is the information communicated back and forth between the
ILP and MapReduce engines, and the definitions of map and reduce used to accomplish
each kind of parallelisation.

4.1 Data parallel computation

Consider the evaluation of the cost function f (h,B,Ei−1) in Step 2 of Fig. 2. We will
assume that the true cost h will require evaluation on the entire set of examples E (rather
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Fig. 5 Generic architecture of the ILP-MapReduce hybrid

than simple Ei−1). For convenience, we will also restrict ourselves to classification problems
in which the examples are pre-classified into one of 2 classes (for convenience, denoted here
as “+” and “−”). Each element of E is therefore a pair (x, c), where x is a data instance and
c is its class value. It has been shown in Lavrac̆ et al. (1999) that a number of cost functions
for ILP can be re-formulated as functions of the 2 × 2 confusion matrix arising from using
the clause h in conjunction with B to classify the E.

In this section, we employ a MapReduce implementation to achieve one kind of data
parallelism in ILP, namely, the parallel computation of the confusion matrix associated with
a clause h in Step 7b.7 This can then be used by the ILP engine to compute f (h,B,E).
Specifically, it is our intention to employ an ILP engine that implements the procedure in
Fig. 2 along with a MapReduce engine in the manner shown in Fig. 6. That is, each mapper
m receives a clause h, background knowledge B and some subset of examples Em. Each
mapper m computes the confusion matrix on Em for h given B . The reducer computes the
final confusion matrix for h using the matrices computed by each of the mappers.

For using the MapReduce setting, we need to define two functions, map and reduce,
which we will do as follows:

The map function gD . Although we are really concerned with gD(h,B,Em), we will write
this as gD(Em) since h and B are constant across all mappers:

gD(Em) =
[ |T P | |FP |

|FN | |T N |
]

where, T P = {(x, c) : (x, c) ∈ Em and c = + and B ∧ h � x}, FP = {(x, c) : (x, c) ∈
Em and c = − and B ∧h � x}, FN = {(x, c) : (x, c) ∈ E and c = + and B ∧h �� x}, and
T N = {(x, c) : (x, c) ∈ E and c = − and B ∧ h �� x}. Here � means “derives”,

7This corresponds to what is called evaluation-parallelism in Fonseca et al. (2008). Data-parallelism in that
paper refers to parallel construction of intermediate clause-sets using subsets of data. For completeness, we
demonstrate that this can be formulated in the MapReduce framework in the Appendix.
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Fig. 6 Using a MapReduce implementation in conjunction with an ILP engine for data parallel cost compu-
tation

Fig. 7 Map and Reduce functions for data parallel cost computation. E1 and E2 are disjoint sets of examples

The reduce function φD . We need to define a binary operation that is associative and has a
unique identity element. Let E1,E2, . . . ,En be any partition of the Em (that is,

⋃
Ei =

Em and Ei ∩ Ej = ∅ for i �= j ). It is straightforward to show that gD(Em) = gD(E1) ⊕
gD(E2) · · ·⊕gD(En), where ⊕ denotes matrix addition. We let φD = ⊕, which is clearly
associative and has a unique identity element.

We note that f (h,B,E) = cost(gD(h,B,E)) = cost(
⊕

i gD(Ei)), is a special case of the
kind of data-decomposable function mentioned earlier. A diagrammatic view of the mapper
and reducer for this form of data-parallel computation is shown in Fig. 7.

We now turn to the logical view of Fig. 6 using the mapreduce/4 predicate in Sect. 3. Let
h denote the clause for which we need to compute the confusion matrix. We assume a helper
function cartesian that, given the set {h} and a set of examples E, returns the Cartesian
product {h} × E, which forms the list of dictionary items over which the map function is
applied. The map function gD maps each such dictionary item of the form (h, e), where e

is any example, to another with the same key (h) and a 2 × 2 matrix as its value. The list
of dictionary items computed by gD are converted into a dictionary by groupbykey in which
all matrices associated with the clause h are grouped together. These are then summed over
by the reduction function using the binary matrix addition function ⊕. The result is the full
confusion matrix for h (the f value can be obtained by the ILP implementation by mapping
the function cost over this confusion matrix. This would give a list containing the dictionary
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Fig. 8 Using mapreduce/4 to
perform the cost computation
within an ILP system. The
background knowledge B is not
shown, with the understanding
that it is the same for all cost
computations, and will be used
by the map function gD

% costmapreduce: H × E (Clause h and mapper examples E)
% × (H, E ) → (H,M) (the function gc)
% ×M × M → M (the function φc)
% → [(H,M)] (the result)
costmapreduce(Clause,E,MapFn,ReduceFn,Cost,DictCMatrix):-

cartesian(Clause,E,DictItems),
mapreduce(MapFn,ReduceFn,DictItems,DictCMatrix).

apply(gD, (Clause,Example), (Clause,Matrix)):-
gD((Clause,Example), (Clause,Matrix)).

apply(φD, (Clause,Matrix), (Clause,Result)):-
identity(φD, I),
φD(Matrix, I,Result).

apply((Clause,Matrix1), (Clause,Matrix2), (Clause,Matrix)):-
φD(Matrix1,Matrix2,Matrix).

item of the form (h,f ) where f is the cost of h). The principal predicate definitions are
shown in Fig. 8, including a definition for apply that uses a polymorphic type definition.

4.1.1 An ILP-specific issue

We turn now to an ILP-specific issue that although apparent from the logical view, requires
further clarification before the MapReduce framework can be used for data parallelism.

We note first that the map function is clearly identical across all machines, which are also
provided the background knowledge required for performing the coverage test of a clause on
the set of examples allocated to that machine. Traditionally, the two dominant ILP variants
have differed on how examples are represented. Within the “learning from interpretations”
setting, all information relevant to an example are kept together and separately from the
background knowledge. Within the “learning from entailment” setting, information relevant
to an example is obtained from the background knowledge using meta-data about the exam-
ple. This usually means that what constitutes background knowledge in the latter setting is
different (and bulkier) than in the former. Current MapReduce implementations are better
suited to settings where all the information for an example are kept together, since it makes
the distribution of the examples easier. It also defeats the purposes of distributing the data,
if very large amounts of background knowledge have to be provided to each map function.
Thus, as it stands, MapReduce implementations appear to be best suited for ILP problems
that are naturally formulated within the learning from interpretations setting. However, for
generality problems within the learning from entailment setting also need to be addressed.
We achieve this here by first “saturating” each example e (in the sense described by Muggle-
ton (1995)) to obtain all the relevant information from the background knowledge B . Each
example e is then represented by its saturated version—in this paper, represented by the
clause ⊥L(B, e) that conforms to language restrictions in L. These saturated examples are
distributed by the MapReduce implementation. This pre-computation of saturated clauses is
also been performed for different reasons in Fonseca et al. (2008).

4.2 Task parallel computation

We now describe how the same MapReduce implementation can be used to achieve a form
of task parallelism for ILP. Specifically, we demonstrate its use in the parallel construction of
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Fig. 9 Using a MapReduce implementation in conjunction with an ILP engine for task parallel search

the clause-set Si on each iteration i of the greedy procedure in Step 7a of Fig. 2.8 Assuming
each invocation of the search function in that step is independent of each other, it is evident
that these can be performed in parallel by different mappers. Further, rather than simply put
these results together (using a union operation), the reducer can in fact be used to perform the
selection in Step 7b. These points are indeed correct. However, there are some peculiarities
to the greedy implementation in Fig. 2, requiring changes to what is communicated to each
mapper. First, in an iteration i, clauses are obtained using the set Ei , which contains the
set of positive examples E+

i−1 remaining to be covered. Secondly, to be useful each clause
in iteration i has to cover at least one of these examples. This means that each mapper
requires, along with the background knowledge B , the examples Ei−1 and a set of positive
examples that it needs to cover. Clearly, to minimise work, we would need to partition the
E+

i−1 amongst the mappers. The combined use with an ILP engine is therefore as in Fig. 9.
For the logical definition, we assume the presence of a helper function selectexamples

that selects each of the k examples in E+
i−1 and creates a trivial list of dictionary items

[(e1, e1), (e2, e2), . . . , (ek, ek)]. The map and reduce functions then are as follows:

The map function gT . When applied to a dictionary item (ej , ej ), the map function re-
turns the dictionary item (ej , (fj , hj )), where hj = search(ej ,B,Ei−1, f ), and fj =
f (hj ,B,Ei−1).

The reduce function φT . The reduce function is applied to dictionary entries of the form
(ej , (fj , hj )). We will take this to be the iterated application of the binary operation φT ,
defined as follows:

φT ((ei, (fi, hi)), (ej , (fj , hj ))) = (ei, (fi, hi)) if fi < fj

= (ej , (fj , hj )) otherwise

8In Fonseca et al. (2008), task parallelism is employed to perform multiple random restarts of a search pro-
cedure that returns a clause-set on each restart. The greedy procedure we use here is the basis for a number
of popular ILP implementations. Nevertheless, for completeness, a MapReduce formulation of a multiple
random restart search is in the Appendix.
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Fig. 10 Map and Reduce functions for task-parallel computation

Fig. 11 Using mapreduce/4 to
perform concurrent search and
selection in one iteration of the
greedy search procedure in Fig. 2
(Steps 7a and 7b)

% searchmapreduce: E (examples E)
% × (E , N ) → (E , (�, H)) (the map function g)
% × (�, H) × (�, H) → (�, H) (the function φ)
% → [(E , (�, H))] (the result)
searchmapreduce(E,MapFn,ReduceFn,Result):-

selectexamples(E,DictItems),
mapreduce(MapFn,ReduceFn,DictItems,Result).

apply(gT , (Example,Example), (Example, (Clause,Cost))):-
gT ((Example,Example), (Example, (Clause,Cost))).

apply(φT , (E,ClauseCost), (Example,Result):-
identity(φT , I ),
φT ((E,ClauseCost), I,Result).

apply((E1,ClauseCost1), (E2,ClauseCost2, (E,ClauseCost)):-
φT ((E1,ClauseCost1), (E2,ClauseCost2), (E,ClauseCost)).

Clearly φT is associative. We define a unique identity element (false, (∞,�)) (where �
denotes the empty clause, and is taken by convention to be the only clause with infinite
cost).

mapreduce with these functions results in a list [(ei, (fi, hi)] containing the example ei that
resulted in the cost-minimal clause hi , along with its score fi . Thus, the map step performs
Step 7a and the reduce step performs Step 7b of Fig. 2. A diagrammatic view of the mapper
and reducer for this form of task-parallel computation is shown in Fig. 10.

The complete definition using these functions is in Fig. 11 (again, apply requires poly-
morphic types).

It is feasible, of course, to employ a MapReduce engine along the lines of the previ-
ous section to perform data parallel computations required during the search conducted by
each mapper. This is beyond the scope of this paper, in which we are concerned with an
investigation of data and task parallelisation in isolation.

5 Empirical evaluation

5.1 Aims

We intend to investigate the effectiveness of using MapReduce for data and task parallel
computation in ILP, as embodied by computing clause matrices and performing parallel
search. The question we examine is the following:

Question. How does the performance of a hybrid ILP-MapReduce implementation change
as the size of data or size of search space increases?



156 Mach Learn (2012) 86:141–168

We obtain empirical answers to this question using synthetic problems of varying data
and search sizes (in the case of the former, examples ranging from few thousands to millions;
and the latter, search space varying from few thousands of nodes to millions). The experi-
ments are intended to provide some insight into how processing time tp(P,M) changes as
size changes for a given P and M ; and how speedup S = T (1,0)/T (P,M) changes as size,
P and M vary. In fact, to make matters simpler, we vary only size and P : M is fixed at
2P for P > 0 (this is the default option for the MapReduce implementation we have used).
We then examine S values on real datasets to determine the extent to which results from the
synthetic data are indicative of real performance.

It is important to note here that we are not interested in comparisons against a “pure”
ILP implementation that can store the data in its entirety in the random access memory of a
single machine and perform search on that machine. Our experiments are meant to inform
the use of ILP where the datasets and search spaces are sufficiently large to require some
form of parallel processing: the question being studied here is how well the MapReduce
model fits that requirement.

5.2 Materials

Data Data for experiments are in two categories:

Synthetic. We use the “Trains” problem posed by R. Michalski. For data parallelism, four
datasets of sizes varying from 100 000 examples to 5 million examples are generated.
For this we use S.H. Muggleton’s random train generator9 that defines a random process
for generating examples. A single draw from the random process gives us one example.
We can generate a dataset having E examples by drawing as many times from this ran-
dom process. Each example is a random train with the number of carriages in the train
following a multinomial distribution. We use a distribution that is biased towards gener-
ating long trains. For task parallelism, we restrict ourselves to a dataset of 40 positive and
40 negative examples. Multiple synthetic problems are generated by varying the number
of search nodes from k = 5 000 to 100 000 for each search. For the trains problem with
a single clause target (this is the case with the problem as originally posed), k nodes
and N positive examples, the total search space is kN . Thus, the synthetic experiments
examine search spaces of sizes ranging from 200 000 to 4 million.

Real. For data parallelism, we examine three real-world datasets: (a) HIV. This is a Prolog-
representation of the atom-bond structure of molecules in the NCI-HIV dataset consist-
ing of approximately 42500 compounds; (b) Yeast. This is the data provided for predic-
tion of gene function in the KDD cup competition of 2001; and (c) Zinc. This is a free
database of commercially available compounds for virtual screening (Irwin and Shoichet
2004). We use a subset of clean-drug-like dataset that contains 2.3 million compounds.
For task parallelism, we use 3 datasets commonly used in the ILP literature, namely:
the mutagenesis dataset containing 188 compounds (King et al. 1996) (125 of which are
positive); the carcinogenesis dataset containing 337 compounds (King and Srinivasan
1996) (182 of which are positive); and the DSSTox dataset (Muggleton et al. 2008) con-
taining 550 compounds (194 of which are positive). Of these datasets, “HIV” and “Zinc”
are problems of learning from interpretations, and “Yeast” is a problem of learning from
entailment.

A summary of all datasets used is in Fig. 12.

9http://www.doc.ic.ac.uk/~shm/Software/GenerateTrains/.

http://www.doc.ic.ac.uk/~shm/Software/GenerateTrains/
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Dataset Size

Trains_D_10K ≈ 10 MB
Trains_D_100K ≈ 100 MB
Trains_D_500K ≈ 500 MB
Trains_D_1M ≈ 1 GB
Trains_D_5M ≈ 5 GB

Dataset Size

HIV ≈ 45 MB
Yeast ≈ 800 MB
Zinc ≈ 7 GB

(a) Synthetic and real data used for evaluation of data parallelism

Dataset Search space (nodes)

Trains_T_1K 40 000
Trains_T_5K 200 000
Trains_T_10K 400 000
Trains_T_50K 2 000 000
Trains_T_100K 4 000 000

Dataset Search size (nodes)

Mut (188) 1.25 × 102–7.8 × 108

Carc 1.82 × 102–1.6 × 109

DSSTox 1.94 × 102–2.4 × 109

(b) Synthetic and real data used for evaluation of task parallelism

Fig. 12 Datasets used for experimental evaluation. We are only able to estimate an upper bound on the size
of the search space for the real data sets in (b), since we do not know beforehand precisely which clauses
would be found on each iteration of the greedy search in Fig. 2. The upper bound is taken to be kN2 where
k is the maximum number of nodes in the search with any one example, and N is the number of positive
examples (the bound follows from assuming that no clauses are found on any of the iterations of the greedy
search). The lower bound follows trivially from the assumption that no more than a single node is examined
for each positive example, and that the greedy procedure terminates after 1 iteration. In the tabulation above
and the experiments in the paper, k = 50 000

Algorithms and machines We distinguish here between three separate sets of procedures:

1. The ILP engine, equipped with a search procedure that is concerned with identifying
clauses. For this, we use the ILP engine Aleph (Srinivasan 1999);

2. The MapReduce engine, that is concerned with data distribution, application of map and
reduce functions in accordance with the definitions given in the main paper. For this we
use Hadoop10 which is an open source implementation of MapReduce; and

3. Definitions of the functions map (gD and gT ) and reduce (φD and φT ). We implement
the map function as a set of clauses in the Prolog language. The reduce function is sim-
ply a counting program that is implemented using standard programs provided by the
Unix operating system. We use the generic API provided by Hadoop Streaming, that al-
lows mappers and reducers can be written in almost any language. Both kinds programs
receive their inputs and write their outputs in standardised ways.

Our choice of Aleph is based on three factors: (a) It is a program that we are intimately
familiar with; (b) Our own familiarity with Aleph notwithstanding, it remains perhaps one
of the most widely used ILP systems; and (c) It has the flexibility to emulate a number
of different ILP systems. We are thus able to conduct experiments by both learning from
entailment and interpretations. The specific aspects of the ILP engine we have elected to
parallelise, namely, clause evaluation and clause-set identification are still at the heart of
many ILP engines. Replacement of Aleph with any other ILP system is straightforward,
since all our communication with the MapReduce implementation is through the rudimen-
tary mechanism of text files.

We have access to two separate clusters of machines, which in effect gives us access to 16
cores on each cluster. Cluster1 actually consists of 16 quad-core processors each equipped

10See: http://hadoop.apache.org/.

http://hadoop.apache.org/
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with up to 250 GB of external disk storage. Cluster2 consists of 8 dual-core processors, each
equipped with up to 600 GB of disk storage. However, with Cluster1, we were operating in
a multi-user environment, in which the MapReduce engine is only allowed access to 1 core
per processor for any task; and not all of the disk storage. Cluster2 operated in a single-user
environment, allowing access to all the cores and disk storage. However, its configuration
make it substantially slower than Cluster1 (we provide an estimate of the difference later in
the paper). Requirements of disk storage space force us to perform experiments on the real
data on Cluster2. At any rate, in either case, the total number of cores is the same (16), and
we will henceforth use the term “processor” and “core” interchangeably to mean nominally,
a single-core processor. In all cases, we use the default setting for the MapReduce engine
that restricts the number of mappers to twice the number of cores.

5.3 Method

Preparatory work for the experiments was as follows. A set of approximately 5000 legal
clauses were generated. We obtained the coverage-testing time of these clauses on a single
machine over a dataset containing 100 000 examples generated randomly using the random
train generator. In order to control for the role of clause complexity on the coverage-test,
we consider 2 classes of clauses as follows. Members of a “simple” class were obtained
by selecting 100 clauses with the lowest coverage-testing time (Rl). Similarly, 100 clauses
with the highest coverage-testing time (Rh) were selected as representative of the class of
complex clauses. Two different experiments were conducted to investigate data parallelism,
using a ILP-MapReduce hybrid along with relevant background knowledge and the logical
definitions for map and reduce described in Sect. 4.1:

DP Scale. This investigates increases in the time to compute the coverage of a clause, with
a fixed number of processors, as data size increases:

For synthetic datasets D = Trains_D_10K . . . Trains_D_5M
(a) With clause-complexity R = Rl , Rh

i. Select a clause C with coverage-testing time R.
ii. Record the time to obtain the confusion matrix of C using data D using the

MapReduce engine with a fixed number of processors (> 1).
(b) For each value of R, let TR be the average time to obtain the coverage of a clause

with complexity R.
1. For each value of R, plot the average time TR obtained (Y) against the size of the

dataset (X).

DP Speedup. This investigates the variation, as data size and the number of processors
change, in speedup S = T (1,0)/T (P,M) in obtaining the coverage of a set of clauses
in an iteration of the greedy procedure in Fig. 2:

For processors (correctly, cores) P = P1, P2, . . . and M = 2P

For synthetic datasets D = Trains_D_10K . . . Trains_D_5M
i. Use the ILP engine to generate a set of clauses SD constituting the search-

space for the best clause that entails at least one positive example in D given
background knowledge B .

ii. Obtain the confusion matrix of each c ∈ SD using the MapReduce engine
with P processors. Let the total time for this be T (P,M).

iii. Obtain the confusion matrix of each c ∈ SD using the ILP engine with a single
processor. Let the total time for this be T (1,0).
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iv. Find the ratio S = T (1,0)/T (P,M).
(To ensure comparability, we determine a set SD that can be used across all of
the D.)

Analogous experiments were conducted for task parallelism as follows, this time using the
logical definitions for map and reduce described in Sect. 4.2:

TP Scale. The performance of the ILP-MapRreduce hybrid as the search space increased
was investigated as follows:

For synthetic datasets D = Trains_T_5K . . . Trains_T_100K
(a) Record the time TD to obtain a hypothesis using the steps in Fig. 2 for problem

D using the ILP-MapReduce engine with a fixed number of processors (> 1).
1. For each D, plot the time TD to obtain the hypothesis (Y) against the size of the

search space (X).

TP Speedup. We investigate the variation of speedup S = T (1,0)/T (P,M) with size and
processors as follows:

For processors (correctly, cores) P = P1, P2, . . . and M = 2P

For synthetic datasets D = Trains_T_5K . . . Trains_T_100K
i. Use the ILP-MapReduce engine to generate a hypothesis using the steps in

Fig. 2 for D with P processors. Let the total time for this be T (P,M).
ii. Use the ILP engine to generate a hypothesis using the steps in Fig. 2 for D

with a single processor. Let the total time for this be T (1,0).
iii. Find the ratio S = T (1,0)/T (P,M).

The following additional points are relevant:

1. Although the greedy procedure in Fig. 2 is deterministic—in the sense that given a set of
examples and background knowledge, repetitions always return the same hypothesis—
parallel environments are still subject random effects. Processors may not always be
idle, network traffic may vary, and so on. Correctly therefore, the entire set of experi-
ments above should be repeated several times, and average values obtained for all quan-
tities. This is computationally expensive, especially for very large search-spaces for task-
parallelism. Using limited repetitions (5) of experiments for data-parallelism and smaller
search-spaces for task-parallelism, we find that the variation in values is small for our
hardware environment. We report average values wherever available, with the caveat that
for large values of search-spaces, the numbers reported for task-parallelism have a greater
degree of uncertainty.

2. Our principal interest is to construct hypotheses quickly on real-world datasets. We
also conduct DP Speedup and TP Speedup on the non-synthetic datasets described in
Sect. 5.2 to examine the extent to which results on the synthetic data are indicative of
real performance.

5.4 Results

Results on synthetic data relevant to data parallelism are shown in Figs. 13 and 14. The
corresponding results for task parallelism are in Figs. 15 and 16. The principal details in
these experimental observations are these:

Finding 1. Benefits of using the MapReduce implementation are evident only if data and
search sizes are above some minimal threshold. While the precise value of this size will
be problem-dependent, provided sufficiently large number of processors are available
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Fig. 13 DP Scale Results. Mean coverage time per clause in seconds using MapReduce implementation for
data parallelism on synthetic data, with a fixed number of processors (here, 16). “Simple” means clauses
with low coverage testing time (Rl ) and “complex” means clauses with high coverage testing time (Rh), as
described in the text

Fig. 14 DP Speedup Results.
Data parallelism speedups as a
function of number of processors
(correctly, cores) and data size.
We use abbreviations for the
datasets: “10K” stands for
“Trains_D_ 10K” and so on

Processors Dataset

10K 100K 500K 1M 5M

4 0.19 0.97 2.71 2.48 2.97

8 0.19 0.89 2.74 3.12 5.23

16 0.19 0.82 3.97 5.88 13.21

Fig. 15 TP Scale Results.
Results for task parallelism on
synthetic data using the
ILP-MapReduce hybrid with a
fixed number of processors
(correctly, cores. Here, this is
equal to 16)
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Fig. 16 TP Speedup Results.
Task parallelism speedups as a
function of number of processors
(correctly, cores) and search size.
We use abbreviations for the
datasets: “1K” stands for
“Trains_T_ 1K” and so on

Processors Dataset
1K 5K 10K 50K 100K

4 0.03 0.21 0.69 2.67 2.73
8 0.03 0.20 0.61 2.95 2.86

16 0.03 0.20 0.59 2.98 2.98

(16 in our case), our synthetic experiments suggest the data threshold is approximately
125 megabytes; and the search-space threshold is about 700 000 nodes.

Finding 2. Ignoring overheads, the time to obtain the confusion matrix for a clause using a
MapReduce engine grows with the size of the dataset. Similarly, as the size of the search
space increases, so does the time to obtain the best clause. In themselves, these observa-
tions are unsurprising. Interest lies in how time grows as size increases. For clauses with
a given complexity, the increase in time for data parallelism is roughly linear with data
size (after sizes are above some minimal size). The increase in time for task parallelism
is non-linear with increase in search space (that is, increases in time are disproportionate
to increases in search size: the most likely reason for this will be discussed shortly).

Finding 3. Even when speedups are obtained, the speedups for task-parallelism appear to
be well below the maximum value (equal to the number of mappers, which should be at
least the same as the number of processors).

We now investigate reasons for each of the observations in greater detail:

Why are benefits only apparent after a certain size? The answer to this lies in the over-
heads associated with the MapReduce implementation. Recall that the time for paral-
lel execution requiring P processors with M mappers is tp(P,M) = rM + to(P ,M)

where to computes the overheads as a monotonic function of P and M , and rM is the

time taken by the slowest mapper (Sect. 3.1); and speedup S = ts+∑M
i=1 ri

ts+rM+to(P,M)
. At small

sizes—for example, 10K for data parallelism and 1K for task parallelism—we first note
that S < 1. A little manipulation will show that speedups less than 1 follow whenever
to(P ,M) >

∑M−1
i=1 ri . It is the case that this condition holds at small data and task sizes

for the problems examined here. As data size increases, M increases and ri may increase
and the condition ceases to hold at some point. As search size increases, ri increases (but
M stays constant) and, once again, the condition ceases to hold at some point. Some of
the effects of the overheads can be lessened, at least for data parallelism, by reducing the
need to repeatedly transfer resource files each time a clause is to be evaluated. If several
clauses can be evaluated at once (this is a feature of some ILP systems like HYPER and
Tilde), then this cost is in some sense, amortized. Evidence for this is seen from Fig. 17.

Why do the times for task parallelism increase non-linearly with search size? This is
an artifact of the particular search performed by the ILP engine we have chosen. The
Aleph program performs a general-to-specific search. Increasing the size of the search
space results, usually, in increasing the specificity of clauses examined (to a first approx-
imation, the number of literals in clauses increases). In turn, this usually increases the
time taken to obtain the clause utility. Aleph determines utility using a subsumption test,
whose time increases non-linearly with increase in the number of literals in the clause.
Thus, the corresponding time for a search conducted by a mapper also increases non-
linearly. We would not expect to see this behaviour with an ILP system that performed a
specific-to-general search.

Why are speedups so modest for task parallelism? This is an artifact of the data we have
chosen. We will concentrate here on low speedups for high search sizes (for moderate to
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Fig. 17 Mean coverage time per clause in seconds using MapReduce implementation for data parallelism,
when: clauses are provided one-at-a-time to the MapReduce engine as before (left); and a set of clauses are
provided (right)

Fig. 18 Variation of the time
taken by the slowest mapper for
task parallelism, against the total
time taken by the remaining
mappers. Dataset abbreviations
are as before

Dataset A = rM (secs) B = ∑M−1
i=1 ri (secs) A : B

1K 0.17 5.42 0.03
5K 1.05 23.55 0.04
10K 9.43 65.85 0.14
50K 192.69 601.31 0.32

small search sizes, overheads of using the MapReduce implementation account for much
of the low values). For the synthetic data, as size increases, rM—the time for the slowest
mapper—progressively begins to take disproportinately more time (see Fig. 18). Recall
from Sect. 3.1 that this situation results in progressively lower speedups. Why does this
happen? It appears that there is one very “difficult” data instance in the synthetic dataset
that entails a hypothesis space whose complex clauses are very complex indeed. Of
course, this kind of situation could well arise with a real dataset, and is indicative of the
complexities that can arise in an ILP problem.

How do these results compare with prior work? We comment first on work in parallel
ILP. For data parallelism no benefits were observed in Fonseca et al. (2008), but we have
to proceed with caution here. Performance benefits reported in Fonseca et al. (2008)
for data parallelism were obtained differently to the method used in this paper. There,
speedup is computed over the time to identify an entire theory, using a randomised
greedy procedure, with and without parallel coverage computation. Speedups reported
here are for identifying a single clause in such a theory. Further, we have employed a
range of synthetic and real data for our estimates, while results in Fonseca et al. (2008)
were on some well-known real datasets. For some kinds of imbalanced problems, it
is quite possible that speedups are observed for identifying most of the clauses in a
theory—as we have observed here—but not for the theory overall (as was observed in
Fonseca et al. 2008). The time to identify the very last clause, for example, may dom-
inate the total time. To this extent, the results here are not inconsistent with Fonseca
et al. (2008). The findings here do however suggest the possibility that the negative re-
sults in Fonseca et al. (2008) might have been an artifact of dataset size. That is, had
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Dataset Size
(MB)

Speedup Ratio
(C1:C2)

C1 C2

100K 100 0.82 0.24 3.42
500K 500 3.97 0.88 4.51
1M 1000 5.88 1.56 3.77
5M 5000 13.21 2.27 5.82

Dataset Size
(nodes)

Speedup Ratio
(C1:C2)

C1 C2

1K 4 × 104 0.03 0.04 0.75
5K 2 × 105 0.20 0.20 1.00
10K 4 × 105 0.59 0.69 0.86
50K 2 × 106 2.98 2.92 1.02
100K 4 × 106 2.98 3.01 0.99

Fig. 19 Performance differences between the clusters used. Here “C1” stands for Cluster1 and “C2” stands
for Cluster2. The speedups are obtained utilising 16 processors (correctly, cores), and the synthetic data used
generated for (a) data (left); and (b) task parallelism (right)

the experiments in Fonseca et al. (2008) been conducted on significantly larger sized
datasets—such as the ones we have used here—then benefits might have become evi-
dent. Performance benefits for task parallelism observed here were also apparent in Fon-
seca et al. (2008). It is difficult to state categorically whether the overheads on search
size are the same in both cases, since no controlled experiments were performed in Fon-
seca et al. (2008). At any rate, we can state that for significantly large search spaces,
the MapReduce approach and that using the MPI protocol show the same qualitative
behaviour.
Comparing against work in using the MapReduce approach with propositional learning,
we find that the linear scale-up observed in Chu et al. (2006) is reflected here only
after some minimal data size. This initial overhead is either absent or not observed in
propositional machine learning. We have already mentioned that we are not aware of
any attempts at using MapReduce implementations to accomplish task parallelism in
propositional learning.

The results from the synthetic data serve as the basis of what we can expect when using
the ILP-MapReduce hybrid with real-life data, based on the sizes of data and search spaces.
We recall first that, for logistic reasons, we conduct experiments on real data on a different
cluster (Cluster2) to that used for synthetic data (Cluster1). We first provide an estimate
of the difference in speeds for the different clusters using the synthetic datasets (Fig. 19).
These results suggest that Cluster2 is somewhere between 3 to 6 times slower than Cluster1
for data parallelism, and approximately the same speed as Cluster1 for task parallelism.11

Further, speedups initially increase for task parallelism, and then saturate for either cluster
around 3 (probably for reasons explained above, namely, that the time taken by the slowest
mapper begins to dominate).

We are now in a position to use the results obtained from synthetic data to make rough
predictions on what can be expected with real data (Fig. 20) and the corresponding results
are in Fig. 21. It is evident that the observed values are within the range we expect.

Finally, we turn to some issues that are of practical relevance:

Generality of the approach. We have already enumerated earlier the three principal reasons
for our choice of Aleph (see Sect. 5.2 on “Algorithms and Machines”). Concerning gen-

11The difference in performance between the two clusters is largely due to differences in overheads in com-
munication between mappers (communication overheads for Cluster2 are substantially higher). This affects
performance for data parallelism much more than for task parallelism: in the former there is substantial
communication between mappers as the performance estimates of a clause are the result of the computation
performed by multiple mappers.
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Dataset Size (MB) Speedup
expected

HIV 45 0.07–0.16
Yeast 800 0.85–1.71
Zinc 7000 > 2.2

Dataset Size (nodes) Speedup
expected

Mut(188) 125–7.8 × 108 ≈ 0–3.0
Carc 182–1.6 × 109 ≈ 0–3.0
DSSTox 194–2.4 × 109 ≈ 0–3.0

Fig. 20 Speedup expected on real world datasets using MapReduce on Cluster2 for (a) data (left); and
(b) task parallelism (right)

Fig. 21 Speedup obtained on
real world datasets using
MapReduce on Cluster2 for
(a) data (left); and (b) task
parallelism (right)

Dataset Speedup

HIV 0.176
Yeast 1.40
Zinc 2.87

Dataset Speedup

Mut(188) 2.11
Carc 2.16
DSSTox 2.44

erality, there are two questions that arise: (1) How Aleph-specific is the ILP-MapReduce
engine used here?; and (2) Can the MapReduce approach be used for other data and
task-parallel computations that arise in ILP? The implementation we have used delib-
erately couples the ILP engine to the MapReduce implementation very loosely: com-
munication is through the (admittedly slow) mechanism of text files. Neither Aleph
nor the use of text-files as the method of communication is necessary: any ILP engine
that can send and receive information shown diagrammatically in Figs. 6 and 9 can be
used. The specific aspects we have elected to parallelise—clause evaluation and greedy
clause-set identification—are at the heart of many ILP engines, but not the only kinds of
computation for which a MapReduce approach can be used. Appendix shows how the
MapReduce techniques can be used to implement other kinds of data and task parallel
computations in ILP.

ILP-specific load balancing. The MapReduce implementation only performs one kind of
load-balancing: a task that is running slowly on a processor (correctly, a mapper) may
be stopped and re-started on a faster processor, if one becomes available. As such, this
does not “solve” ILP-specific imbalances that may arise in data or task parallelism. It
is quite possible, for example, that checking coverage of just a single example could
prove to be extremely time-consuming (see Botta et al. 1999), and skew the time taken
to compute the overall coverage of a clause. As we have described it, the MapReduce
implementation may progressively allocate this computation to faster processors, it will
not automatically perform any optimisations of the kind described in Costa et al. (2003),
or that may be done by an RDBMS. The essential reasons for the imbalance will there-
fore remain (similar arguments hold for task-parallelism). There is, of course, nothing
preventing us from exploring the use of a MapReduce engine designed to address this
issue better. For example, each mapper could be provided a subset of literals in a clause,
and compute the sets of examples covered and not covered. In this case, “slower subsets”
would get assigned to a faster processors.

6 Concluding remarks

We recall the principal question with which we embarked on this paper: is there a single,
simple approach that can be used by any ILP system to perform effective data and task par-
allelisation? To this we are now able to give a qualified answer concerning the widely-used
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MapReduce approach. It is a uniform approach that is certainly simple, and can be used
by any ILP engine with practically no significant implementation effort. The qualifications
arise when examining its effectiveness. Our results suggest that it will provide an effective
form of parallelisation when: (a) problem sizes (for example, data or search-space size) are
very large; and (b) dynamic overheads can be minimised. The latter costs are not evident
from descriptions of the MapReduce approach available in the literature, and will increase
the implementation burden on developing an ILP engine that can properly utilise the paral-
lelisation technique. If these two conditions can be met, then there are significant benefits
of using a MapReduce engine like Hadoop, which removes several other complexities asso-
ciated with distributed computing (like fault-tolerance, redundancy, load-balancing and so
on). MapReduce is not, however, a panacea for all forms of parallelisation, nor is it an alter-
native to a full-scale relational database system. The limitations of the approach have been
described in detail in Pavlo et al. (2009). Nevertheless, for the easy scaled-up ILP engines,
the approach seems to be acceptable. Even here, we need to add a caveat: our results with
synthetic data suggest that for ILP, the framework is better suited for data parallelism, rather
than task parallelism.

There are a number of ways in which the work here can be extended. First, nothing
we have proposed here is restricted to the specific ILP engine we have selected (Aleph). It
is clearly of interest to investigate improvements in performance with other ILP engines.
Communication between the ILP and MapReduce engines can also be improved from the
rudimentary approach we have employed here (that of text files). Secondly, at various points
in the paper, we have compared results we have obtained against those obtained with an im-
plementation with the same ILP engine using the MPI protocol. In fact, this kind of compari-
son is not completely appropriate. Recent research has shown how the MapReduce approach
can be implemented using corresponding functions in the MPI protocol (Hoefler et al. 2009).
Our principal goal here is not to advocate the specific MapReduce implementation we have
used here: rather it is to emphasise that several kinds of parallelism can be achieved by def-
initions of two simple functions. Provided these functions can be implemented without any
user-involvement, we are relatively unconcerned by the underlying implementation—it may
well be the case that an MPI-based implementation of MapReduce may be more efficient
than the Hadoop-based one we have used here, and implementations such as those proposed
in Miceli et al. (2009) would be better suited for scaling-up ILP for problems where data
and background are even geographically distributed. Thirdly, although we have chosen to
study data- and task-parallelism in isolation here, it is clearly of interest to combine them.
This can be done in a straightforward manner by setting up dependencies amongst jobs (the
MapReduce implementation we have used allows this). Finally, we have not used any form
of sampling here. It is quite likely that substantial gains would be possible by incorporating
data reduction by sampling within an ILP-MapReduce engine.

We turn now to the broader issue addressed in this paper, namely, the use of ILP as a tool
for data analysis in an era where both domain-specific data and background information are
increasing at a rapid rate; and multi-processor machines are becoming the norm. In such a
setting, the emergence of ILP engines that exploit the concurrency within their procedures
would appear to be a natural development. Yet, this has not been the case: implementa-
tions continue to sequential programs handling modest-sized problems. We believe that a
point will soon be reached where large-scale multi-processor implementations will become
a necessity if ILP is to fulfil its potential as one of the most powerful automated methods
available for scientific and industrial data analysis. Investigations such as the one in this
paper are aimed at preventing the loss of kingdom for the want of a nail.
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Appendix: Some other ways of using MapReduce in ILP

A.1 Clause-set identification using subsets of data

There have been attempts reported in the ILP literature (Fonseca et al. 2008; Wang and Skil-
licorn 2000) of clause-set identification by constructing (intermediate) clause-sets on subsets
of the examples (the subsets need not necessarily be disjoint), and constructing a single final
set of clauses from these intermediate clause-sets (this is called “data parallelism” in Fon-
seca et al. (2008)). It is straightforward to formulate this within the MapReduce framework:
individual mappers are assigned the task of identifying an intermediate clause-sets using a
subsets of examples. The reducer then combines the intermediate clause-sets. We illustrate
this with a k-partition E+

1 ,E+
2 , . . . ,E+

k of the positive examples E+ (that is,
⋃

E∗
i = E+

and E+
i ∩ E+

j = ∅ for i �= j ). We assume the presence of a helper function splitdata that
creates a list of k dictionary items (α,E1), (α,E2), . . . , (α,Ek) where Ei = E+

i ∪ E− and α

is some constant. The map and reduce functions are as follows:

The map function g. When applied to a dictionary item (α,Ei), the map function returns
the dictionary item (α,Hi), where Hi is the intermediate clause-set identified by an ILP
engine given the subset Ei (along with background knowledge B and cost function f

which is taken to be the same for all mappers).
The reduce function φ. The reduce function is applied to dictionary entries of the form

(α, [H1,H2, . . . ,Hk]). We will take this to be the iterated application of the binary oper-
ation φ, defined as φ(Hi,Hj ) = Hi ∪Hj . That is, the final clause-set is simply the union
of all the intermediate clause-sets. Clearly φ is associative with ∅ as an identity element.

A.2 Clause-set identification using multiple random restarts

In the paper we examined the parallel construction of clauses on each iteration of the greedy
procedure in Fig. 2. There are other ways to identify clause-sets: in Zelezny et al. (2002),
it was shown that a performing several randomised searches was usually better than a sin-
gle deterministic search. In addition, in Fonseca et al. (2008), it was shown that conducting
these randomised searches in parallel was more effective than conducting them sequentially.
Here, we consider identifying of k iterations of a procedure, each of which consists of r ran-
domised searches conducted in parallel, using ei examples selected from E. On an iteration
i, the best clause hi (that is, with the lowest cost) from these r parallel searches is selected,
and the next iterate is commenced. We are able to use mapreduce function described in the
paper to perform in parallel both the r randomised searches, and the k iterations. We assume
the presence of a helper function randomsample that samples k examples from E and creates
a list of r × k dictionary items [(e1,1), (e1,2), . . . , (e1, r), . . . , (ek,1), (ek,2), . . . , (ek, r)].
The map and reduce functions are as follows:

The map function g. When applied to a dictionary item (ei, j), the map function returns
the dictionary item (ei, (fj , hj )), where hj is the best clause returned by the j th ran-
domised restarted search using example ei , background B and examples E (see Zelezny
et al. 2002 for details). Since B , E and the cost function f are constant in all cases, we
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will omit them in the specification of the map function for clarity. g will therefore be
taken to be a function of ei and j , with the understanding that B , E and f are contained
in the definition. Thus, g(ei, j) = rrr(ei, j,B,E) where rrr denotes the randomised
search function described in Zelezny et al. (2002).

The reduce function φ. The reduce function is applied to dictionary entries of the form
(ei, [(f1, h1), (f2, h2), . . . , (fr , hr)]). We will take this to be the iterated application of
the binary operation φ, defined as follows:

φ((fi, hi), (fj , hj )) = (fi, hi) if fi < fj

= (fj , hj ) otherwise.

Clearly φ is associative, and has a unique identity element (∞,�) (where � denotes
“false”, and is taken by convention to be the only clause with infinite cost).
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