
Journal of Mathematical Imaging and Vision (2019) 61:482–503
https://doi.org/10.1007/s10851-018-0857-2

A Convex Geodesic Selective Model for Image Segmentation

Michael Roberts1 · Ke Chen1 · Klaus L. Irion2

Received: 17 January 2018 / Accepted: 16 October 2018 / Published online: 1 November 2018
© The Author(s) 2018

Abstract
Selective segmentation is an important application of image processing. In contrast to global segmentation in which all objects
are segmented, selective segmentation is used to isolate specific objects in an image and is of particular interest in medical
imaging—permitting segmentation and review of a single organ. An important consideration is to minimise the amount of user
input to obtain the segmentation; this differs from interactive segmentation in which more user input is allowed than selective
segmentation. To achieve selection, we propose a selective segmentation model which uses the edge-weighted geodesic
distance from a marker set as a penalty term. It is demonstrated that this edge-weighted geodesic penalty term improves
on previous selective penalty terms. A convex formulation of the model is also presented, allowing arbitrary initialisation.
It is shown that the proposed model is less parameter dependent and requires less user input than previous models. Further
modifications are made to the edge-weighted geodesic distance term to ensure segmentation robustness to noise and blur. We
can show that the overall Euler–Lagrange equation admits a unique viscosity solution. Numerical results show that the result
is robust to user input and permits selective segmentations that are not possible with other models.

Keywords Variational model · Partial differential equations · Image segmentation · Additive operator splitting · Viscosity
solution · Geodesic

1 Introduction

Segmentation of an image into its individual objects is one
incredibly important application of image processing tech-
niques. Segmentation can take two forms: firstly, global
segmentation for isolation of all foreground objects in an
image from the background and secondly, selective segmen-
tation for isolation of a subset of the objects in an image
from the background. A comprehensive review of selective
segmentation can be found in [7,19] and in [44] for medical
image segmentation where selection refers to extraction of
single organs.
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Approaches to image segmentation broadly fall into
two classes: region based and edge based. Some region-
based approaches are region growing [1], watershed algo-
rithms [39],Mumford and Shah [29] andChan andVese [11].
The final two of these are partial differential equations
(PDEs)-based variational approaches to the problem of seg-
mentation. There are also models which mix the two classes
to use the benefits of the region-based and edge-based
approaches andwill incorporate features of each. Edge-based
methods aim to encourage an evolving contour towards the
edges in an image and normally require an edge detector
function [8]. The first edge-based variational approach was
devised by Kass et al. [22] with the famous snakes model and
further developed by Casselles et al. [8] who introduced the
geodesic active contour (GAC) model. Region-based global
segmentationmodels include thewell-knownworks ofMum-
ford and Shah [29] and Chan and Vese [11]. Importantly,
they are non-convex and hence a minimiser of these mod-
els may only be a local, not the global, minimum. Further
work by Chan et al. [10] gave rise to a method to find the
globalminimiser for theChan–Vesemodel under certain con-
ditions.

This paper is mainly concerned with selective segmenta-
tion of objects in an image, given a set of points near the
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object or objects to be segmented. It builds in such user input
to amodel using a setM = {(xi , yi ) ∈ Ω, 1 ≤ i ≤ k}where
Ω ⊂ R

2 is the image domain [4,5,17]. Nguyen et al. [30]
considered marker sets M and A which consist of points
inside and outside, respectively, the object or objects to be
segmented.Gout et al. [17] combined theGACapproachwith
the geometrical constraint that the contour passes through
the points of M. This was enforced with a distance func-
tion which is zero at M and nonzero elsewhere. Badshah
and Chen [4] then combined the Gout et al. model with [11]
to incorporate a constraint on the intensity in the selected
region, thereby encouraging the contour to segment homo-
geneous regions. Rada and Chen [35] introduced a selective
segmentation method based on two-level sets which was
shown to be more robust than the Badshah–Chen model.
We also refer to [5,23] for selective segmentation models
which include different fitting constraints, using coefficient
of variation and the centroid of M, respectively. None of
these models have a restriction on the size of the object
or objects to be detected, and depending on the initialisa-
tion, these methods have the potential to detect more or
fewer objects than the user desired. To address this and to
improve on [35], Rada and Chen [36] introduced a model
combining the Badshah–Chen [4] model with a constraint
on the area of the objects to be segmented. The refer-
ence area used to constrain the area within the contour is
that of the polygon formed by the markers in M. Spencer
and Chen [38] introduced a model with the distance fit-
ting penalty as a stand-alone term in the energy functional,
unbounding it from the edge detector term of the Gout et al.
model.

All of the above selective segmentation models discussed
are non-convex, and hence the final result depends on the
initialisation. Spencer and Chen [38], in the same paper,
reformulated the model they introduced to a convex form
using convex relaxation and an exact penalty term as in [10].
Their model uses Euclidean distance from the marker set
M as a distance penalty term; however, we propose replac-
ing this with the edge-weighted geodesic distance from M
(we call this simply the geodesic distance). This distance
increases at edges in the image and is more intuitive for
selective segmentation. The proposed model is given as a
convex relaxed model with exact penalty term, and we give
a general existence and uniqueness proof for the viscosity
solution to the PDE given by its Euler–Lagrange equation,
which is also applicable to a whole class of PDEs arising in
image segmentation. We note that the use of geodesic dis-
tance for segmentation has been considered before [6,33];
however, the models only use geodesic distance as the
fitting term within the regulariser, so are liable to make seg-
mentation errors for poor initialisation or complex images.
Here, we take a different approach, by including geodesic
distance as a stand-alone fitting term, separate from the

regulariser, and using intensity fitting terms to ensure robust-
ness.

In this paper, we only consider 2D images; however, for
completion, we remark that 3D segmentation models do
exist [25,43] and it is simple to extend the proposed model
to 3D. The contributions of this paper can be summarised as
follows:

• We incorporate the geodesic distance as a distance
penalty term within the variational framework.

• Wepropose a convex selective segmentationmodel using
this penalty term and demonstrate how it can achieve
results which cannot be achieved by other models.

• We improve the geodesic penalty term, focussing on
improving robustness to noise and improving segmen-
tation when object edges are blurred.

• Wegive an existence and uniqueness proof for the viscos-
ity solution for the PDEs associated with a whole class
of segmentation models (both global and selective).

We find that the proposedmodel gives accurate segmentation
results for awide range of parameters and, in particular, when
segmenting the same objects from the samemodality images,
i.e. segmenting lungs fromCT scans, the parameters are very
similar from one image to the next to obtain accurate results.
Therefore, this model may be used to assist the preparation
of large training sets for deep learning studies [40,41] that
concern segmentation of particular objects from images.

The paper is structured as follows: in Sect. 2, we review
some global and selective segmentation models. In Sect. 3,
we discuss the geodesic distance penalty term, propose a
new convex model and also address weaknesses in the naïve
implementation of the geodesic distance term. In Sect. 4, we
discuss the nonstandard AOS scheme, introduced in [38],
which we use to solve the model. In Sect. 5, we give an
existence and uniqueness proof for a general class of PDEs
arising in image segmentation, thereby showing that for a
given initialisation, the solution to our model is unique. In
Sect. 6,we compare the results of the proposedmodel to other
selective segmentation models and show that the proposed
model is less parameter dependent than other models and
is more robust to user input. Finally, in Sect. 7, we provide
some concluding remarks.

2 Review of Variational Segmentation
Models

Although we focus on selective segmentation, it is illumi-
nating to introduce some global segmentation models first.
Throughout this paper, we denote the original image by
z(x, y) with image domain Ω ⊂ R

2.
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2.1 Global Segmentation

The model of Mumford and Shah [29] is one of the most
famous and important variationalmodels in image segmenta-
tion. We will review its two-dimensional piecewise constant
variant, commonly known as the Chan–Vese model [11],
which takes the form

FCV(Γ, c1, c2)

= μ · length(Γ ) + λ1

∫
Ω1

|z(x, y) − c1|2 dΩ

+λ2

∫
Ω2

|z(x, y) − c2|2 dΩ (1)

where the foreground Ω1 is the subdomain to be segmented,
the background Ω2 = Ω\Ω1 and μ, λ1, λ2 are fixed non-
negative parameters. The values c1 and c2 are the average
intensities of z(x, y) inside Ω1 and Ω2, respectively. We use
a level set function

φ(x, y) =

⎧⎪⎨
⎪⎩

> 0, (x, y) ∈ Ω1,

0, (x, y) ∈ Γ,

< 0, otherwise,

to track Γ = {(x, y) ∈ Ω | φ(x, y) = 0} (an idea popu-
larised by Osher and Sethian [31]) and reformulate (1) as

FCV(φ, c1, c2)

= μ

∫
Ω

|∇Hε(φ)| dΩ + λ1

∫
Ω

(z(x, y) − c1)
2Hε(φ) dΩ

+λ2

∫
Ω

(z(x, y) − c2)
2(1 − Hε(φ)) dΩ, (2)

with Hε(φ) a smoothed Heaviside function such as Hε(φ) =
1
2 + 1

π
arctan(φ

ε
) for some ε, we set ε = 1 throughout. We

solve this in two stages, first with φ fixed we minimise FCV

with respect to c1 and c2, obtaining

c1 =
∫
Ω

Hε(φ) · z(x, y) dΩ∫
Ω

Hε(φ) dΩ
,

c2 =
∫
Ω

(1 − Hε(φ)) · z(x, y) dΩ∫
Ω

(1 − Hε(φ)) dΩ
, (3)

and second, with c1 and c2 fixedweminimise (2)with respect
to φ. This requires the calculation of the associated Euler–
Lagrange equations. A drawback of the Chan–Vese energy
functional (2) is that it is non-convex. Therefore, a minimiser
may only be a local minimum and not the global minimum
and the final segmentation result is dependent on the ini-
tialisation. Chan et al. [10] reformulated (2) using an exact
penalty term to obtain an equivalent convex model—we use
this same technique in Sect. 2.2 for the Geodesic Model.

2.2 Selective Segmentation

Selective segmentation models make use of user input, i.e.
a marker set M of points near the object or objects to be
segmented. Let M = {(xi , yi ) ∈ Ω, 1 ≤ i ≤ k} be such a
marker set. The aim of selective segmentation is to design an
energy functional where the segmentation contour Γ is close
to the points of M.

Early workAn early model by Caselles et al. [8], commonly
known as the geodesic active contour (GAC) model, uses an
edge detector function to ensure the contour follows edges,
and the functional to minimise is given by

∫
Γ

g(|∇z(x, y)|)dΓ.

The term g(|∇z(x, y)|) is an edge detector; one example is
g(s) = 1/(1+βs2)with β a tuning parameter. It is common
to smooth the image with a Gaussian filter Gσ where σ is
the kernel size, i.e. use g(|∇ (Gσ ∗ z(x, y)) |) as the edge
detector. Thismitigates the effect of noise in the image, giving
a more accurate edge detector. Gout et al. [25] built upon
the GAC model by incorporating a distance term D(x, y)

into this integral; i.e. the integrand is D(x, y)g(|∇z|). The
distance term is a penalty on the distance from M, and this
model encourages the contour to be near to the setM whilst
also lying on edges. However, this model struggles when
boundaries between objects and their background are fuzzy
or blurred. To address this, Badshah and Chen [4] introduced
a new model which adds the intensity fitting terms from the
Chan–Vesemodel (1) to theGout et al. [35]model. However,
their model has poor robustness. To improve on this, Rada
and Chen [36] introduced a model which adds an area fitting
term into the Badshah–Chen model and is far more robust.

The Rada–Chen model [36] We first briefly introduce this
model, defined by

FRC(φ, c1, c2) = μ

∫
Ω

D(x, y)g(|∇z(x, y)|)|∇Hε(φ)| dΩ

+ λ1

∫
Ω

(z(x, y) − c1)
2Hε(φ) dΩ

+ λ2

∫
Ω

(z(x, y) − c2)
2(1 − Hε(φ)) dΩ

+ γ

[(∫
Ω

Hε(φ) dΩ − A1

)2

+
(∫

Ω

(1 − Hε(φ)) dΩ − A2

)2 ]
, (4)

where μ, λ1, λ2, γ are fixed nonnegative parameters. There
is freedom in choosing the distance termD(x, y); see [36] for
some examples. A1 is the area of the polygon formed from
the points of M and A2 = |Ω| − A1. The final term of this
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functional puts a penalty on the area inside a contour being
very different to A1. One drawback of the Rada–Chen model
is that the selective fitting term uses no location information
from themarker setM. Therefore, the result can be a contour
which is separated over the domain into small parts, whose
sum area totals the area fitting term.

Nguyen et al. [30] This model is based on the GAC model
anduses likelihood functions as fitting terms, it has the energy
functional

FNG(φ) =μ

∫
Ω

g(|∇z(x, y)|)|∇Hε(φ)| dΩ

+ λ

∫
Ω

α (PB(x, y) − PF(x, y))

+ (1 − α) (1 − 2P(x, y)) φ dΩ

where PB(x, y) and PF(x, y) are the normalised log-likeli-
hoods that the pixel (x, y) is in the foreground and back-
ground, respectively. P(x, y) is the probability that pixel
(x, y) belongs to the foreground, α ∈ [0, 1] and minimi-
sation is constrained, requiring φ ∈ [0, 1], so FNG(φ) is
convex. This model is good for many examples, see [30],
and however, fails when the boundary of the object to seg-
ment is non-smooth or has fine structures. Also, the final
result is sometimes sensitive to the marker sets used.

The Spencer–Chen model [38] The authors introduced the
following model:

FSC(φ, c1, c2) =μ

∫
Ω

g(|∇z(x, y)|)|∇Hε(φ)| dΩ

+ λ1

∫
Ω

(z(x, y) − c1)
2Hε(φ) dΩ

+ λ2

∫
Ω

(z(x, y) − c2)
2(1 − Hε(φ)) dΩ

+ θ

∫
Ω

DE (x, y)Hε(φ) dΩ, (5)

where μ, λ1, λ2, θ are fixed nonnegative parameters. Note
that the regulariser of this model differs from the Rada–
Chen model (4) as the distance function D(x, y) has been
separated from the edge detector term and is now a stand-
alone penalty term DE (x, y). The authors use normalised
Euclidean distanceDE (x, y) from the marker setM as their
distance penalty term. We will discuss this later in Sect. 3 as
it is one of the key improvements we make to the Spencer–
Chen model, replacing the Euclidean distance term with a
geodesic distance term.

Convex Spencer–Chen model [38] Spencer and Chen use
the ideas of [10] to reformulate (5) into a convexminimisation
problem. It can be shown that the Euler–Lagrange equations
for FSC(φ, c1, c2) have the same stationary solutions as for

FSC1(u, c1, c2)

= μ

∫
Ω

g(|∇z(x, y)|)|∇u| dΩ

+
∫

Ω

[
λ1(z(x, y) − c1)

2 − λ2(z(x, y) − c2)
2
]

u dΩ

+ θ

∫
Ω

DE (x, y)u dΩ, (6)

with the minimisation constrained to u ∈ [0, 1]. This is a
constrained convex minimisation which can be reformulated
to an unconstrainedminimisation using an exact penalty term
ν(u) := max{0, 2|u− 1

2 |−1} in the functional, which encour-
ages the minimiser to be in the range [0, 1]. In [38], the
authors use a smooth approximation νε(u) to ν(u) given by

νε(u) = Hε

(√
(2u − 1)2 + ε − 1

) [√
(2u − 1)2 + ε − 1

]
,

(7)

and perform the unconstrained minimisation of

FSC2(u, c1, c2)

= μ

∫
Ω

g(|∇z(x, y)|)|∇u| dΩ

+
∫

Ω

[
λ1(z(x, y) − c1)

2 − λ2(z(x, y) − c2)
2
]

u dΩ

+ θ

∫
Ω

DE (x, y)u dΩ + α

∫
Ω

νε(u) dΩ. (8)

When α > 1
2

∣∣∣∣[λ1(z(x, y) − c1)2 − λ2(z(x, y) − c2)2
]

+θDE (x, y)||L∞ , the above functional has the same set of
stationary solutions as FSC1(u, c1, c2). It permits us to choose
arbitrary u initialisation to obtain the desired selective seg-
mentation result due to its complexity.

Convex Liu et al. model [26] Recently, a convex model was
introduced by Liu et al. which applies a weighting to the data
fitting terms, and the functional to minimise is given by

FLIU(u) =μ

∫
Ω

|∇u| dΩ + μ2

∫
Ω

|∇u|2 dΩ

+ λ

∫
Ω

ω2(x, y) |z − u|2 dΩ,

(9)

where μ,μ2, λ are nonnegative parameters and ω(x, y) =
1−D(x, y)g(|∇z|)whereD(x, y) is a distance function from
marker set M (see [26], e.g.).

3 Proposed Convex Geodesic Selective
Model

We propose an improved selective model, based on the
Spencer–Chenmodel, which uses geodesic distance from the
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Fig. 1 Comparison of distance measures. a Simple binary image with marker point; b normalised Euclidean distance from marker point; c edge
map function f (x) for the image; d normalised geodesic distance from marker point

marker setM as the distance term, rather than the Euclidean
distance. Increasing the distance when edges in the image are
encountered gives a more accurate reflection of the true sim-
ilarity of pixels in an image from the marker set. We propose
minimising the convex functional

FCG(u, c1, c2)

= μ

∫
Ω

g(|∇z(x, y)|)|∇u| dΩ

+
∫

Ω

[
λ1(z(x, y) − c1)

2 − λ2(z(x, y) − c2)
2
]

u dΩ

+ θ

∫
Ω

DM (x, y)u dΩ + α

∫
Ω

νε(u) dΩ, (10)

whereDM (x, y) is the edge-weighted geodesic distance from
themarker set. In Fig. 1,we compare the normalised geodesic
distance and the Euclidean distance from the same marker
point (i.e. setM has one point in it); clearly, the former gives
a more intuitively correct distance penalty than the latter. We
will refer to this proposed model as the Geodesic Model.

3.1 Computing the Geodesic Distance TermDM(x, y)

The geodesic distance from the marker set M is given
by DM (x, y) = 0 for (x, y) ∈ M and DM (x, y) =

D0
M (x,y)

||D0
M (x,y)||L∞ for (x, y) /∈ M, whereD0

M (x, y) is the solution

of the following PDE:

|∇D0
M (x, y)| = f (x, y),

D0
M (x0, y0) = 0, (x0, y0) ∈ M. (11)

where f (x, y) is defined later on with respect to the image
contents.

If f (x, y) ≡ 1 (i.e. |∇D0
M (x, y)| = 1), then the distance

penalty DM (x, y) is simply the normalised Euclidean dis-
tance DE (x, y) as used in the Spencer–Chen model (5). We
have free rein to design f (x, y) as we wish. Looking at the

PDE in (11), we see that when f (x, y) is small, this results
in a small gradient in our distance function and it is almost
flat. When f (x, y) is large, we have a large gradient in our
distance map. In the case of selective image segmentation,
we want small gradients in homogeneous areas of the image
and large gradients at edges. If we set

f (x, y) = εD + βG |∇z(x, y)|2, (12)

this gives us the desired property that in areas where
|∇z(x, y)| ≈ 0, the distance function increases by some
small εD; here, image z(x, y) is scaled to [0, 1]. At edges,
|∇z(x, y)| is large and the geodesic distance increases here.
We set value of βG = 1000 and εD = 10−3 throughout. In
Fig. 1, we see that the geodesic distance plot gives a low dis-
tance penalty on the triangle, which the marker indicates we
would like segmented. There is a reasonable penalty on the
background, and all other objects in the image have a very
high distance penalty (as the geodesic to these points must
cross two edges). This contrasts with the Euclidean distance,
which gives a low distance penalty to some background pix-
els and maximum penalty to the pixels furthest away.

3.2 Comparing Euclidean and Geodesic Distance
Terms

We briefly give some advantages of using the geodesic dis-
tance as a penalty term rather than Euclidean distance and a
remark on the computational complexity for both distances.

1. Parameter robustness. The Geodesic Model is more
robust to the choice of the fitting parameter θ , as the
penalty on the inside of the shape we want segmented
is consistently small. It is only outside the shape where
the penalty is large. However, with the Euclidean dis-
tance term, we always have a penalty inside the shape
we actually want to segment. This is due to the nature
of the Euclidean distance which does not discriminate
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on intensity—this penalty can also be quite high if our
marker set is small and does not cover the whole object.

2. Robust to marker set selection. The geodesic distance
term is far more robust to point selection; for example,
we can choose just one point inside the object we want
to segment and this will give a nearly identical geodesic
distance compared to choosing many more points. This
is not true of the Euclidean distance term which is very
sensitive to point selection and requires markers to be
spread in all areas of the object you want to segment
(especially, at extrema of the object).

Remark 1 (Computational complexity) The main concern of
using the geodesic penalty term, which we obtain by solving
PDE (11), would be that it takes a significant amount of time
to compute compared to the Euclidean distance. However,
using the fast marching algorithm of Sethian [37], the com-
plexity of computingDM (x, y) isO(N log(N )) for an image
with N pixels. This is only marginally more complex than
computing the Euclidean distancewhich hasO(N ) complex-
ity [28].

3.3 Improvements to Geodesic Distance Term

Wenowpropose somemodifications to the geodesic distance.
Although the geodesic distance presentsmany advantages for
selective image segmentation, we have three key disadvan-
tages of this fitting term, which the Euclidean fitting term
does not suffer.

1. Not robust to noise. The computation of the geodesic
distance depends on |∇z(x, y)|2 in f (x, y) [see (11)].

So, if an image contains a lot of noise, each noisy pixel
appears as an edge andwe get amisleading distance term.

2. Objects far from M with low penalty. As the geodesic
distance only uses marker set M for its initial condition
[see (11)], this can result in objects far fromM having a
low distance penalty, which is clearly not desired.

3. Blurred edges. If we have two objects separated by a
blurry edge andwe havemarker points only in one object,
the geodesic distance will be low to the other object, as
the edge penalty is weakly enforced for a blurry edge.We
would desire low penalty inside the object with markers
and a reasonable penalty in the joined object.

In Fig. 2, each column shows an example for each of the
problems listed above. We now propose solutions to each of
these problems.

Problem 1: Noise robustness
A naïve solution to the problem of noisy images would be

to apply a Gaussian blur to z(x, y) to remove the effect of
the noise, so we change f (x, y) to

f̃ (x, y) = εD + βG |∇Gσ ∗ z(x, y)|2 (13)

where Gσ is a Gaussian convolution with standard devia-
tion σ . However, the effect of Gaussian convolution is that
it also blurs edges in the image. This then gives us the same
issues described in Problem 3.We see in Fig. 3 column 3 that
the Gaussian convolution reduces the sharpness of edges and
this results in the geodesic distance being very similar in
adjacent objects—therefore, we see more pixels with high
geodesic distance. Our alternative to Gaussian blur is to con-
sider anisotropic TV denoising. We refer the reader to [9,32]
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Fig. 2 Examples of images showing the problems discussed and
the resulting geodesic distance maps. Column 1 shows the lack of
robustness to noise, column 2 shows that outside the patient we have

unreasonably low distance penalty and column 3 shows how the blurred
edge under the aorta leads to the distance term being very low through-
out the heart
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Fig. 3 Edge maps and geodesic distance maps. Left to right: the clean
image, the image with 10%Gaussian noise, the noisy image with Gaus-
sian convolution applied (σ = 5) and thenoisy imagewith 100 iterations

of anisotropic TV Gauss–Seidel smoothing. The setM is shown on the
top row, which is the same for each image

for information on the model; here, we just give the PDE
which results from its minimisation:

μ̃∇ ·
(

g(|∇z(x, y)|) ∇u

|∇u|ε2

)
+ ι(z(x, y) − u) = 0, (14)

where μ̃, ι are nonnegative parameters (we fix throughout
μ̃ = 10−3, ι = 5×10−4). It is proposed to apply a relatively
small number of cheap fixed point Gauss–Seidel iterations
(between 100 and 200) to the discretised PDE. We cycle
through all pixels (i, j) and update ui, j as follows:

ui, j = Ai, j ui+1, j + Bi, j ui−1, j + Ci, j ui, j+1 + Di, j ui, j−1

Ai, j + Bi, j + Ci, j + Di, j + ι

(15)

where Ai, j = μ̃

h2x
g(|∇z(x, y)|)i+1/2, j , Bi, j = μ̃

h2x
g

(|∇z(x, y)|)i−1/2, j , Ci, j = μ̃

h2y
g(|∇z(x, y)|)i, j+1/2 and

Di, j = μ̃

h2y
g(|∇z(x, y)|)i, j−1/2. We update all pixels once

per iteration and solve the PDE in (11) with f (x, y) replaced
by

f1(x, y) = εD + βG |∇Sk(z(x, y))|2 (16)

where S represents the Gauss–Seidel iterative scheme and
k is the number of iterations performed (we choose k =

100 in our tests). In the final column of Fig. 3, we see that
the geodesic distance map more closely resembles that of
the clean image than the Gaussian blurred map in column
3, and in Fig. 4, we see that the segmentation results are
qualitatively and quantitatively better using the anisotropic
smoothing technique.

Problem 2: Objects far fromM with low penalty
In Fig. 2 column 2, we see that the geodesic distance to

the outside of the patient is lower than to their ribs. This is
due to the fact that the region outside the body is homoge-
neous and there is almost zero distance penalty in this region.
Similarly for Fig. 3 column 4, the distances from the marker
set to many surrounding objects are low, even though their
Euclidean distance from the marker set is high. We wish
to have the Euclidean distanceDE (x, y) incorporated some-
how. Our solution is to modify the term f1(x, y) from (16) to

f2(x, y) = εD + βG |∇Sk(z(x, y))|2 + ϑDE (x, y). (17)

In Fig. 5, the effect of this is clear; as ϑ increases, the dis-
tance function resembles the Euclidean distance more. We
use value ϑ = 10−1 in all experiments as it adds a reason-
able penalty to pixels far from the marker set.

Problem 3: Blurred edges
If there are blurred edges between objects in an image, the

geodesic distance will not increasesignificantly at this edge.
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10% Gaussian Noise Non-Smoothed TC = 0.9192 Smoothed TC = 0.9417

20% Gaussian Noise Non-Smoothed TC = 0.8538 Smoothed TC = 0.9055

30% Gaussian Noise Non-Smoothed TC = 0.7321 Smoothed TC = 0.9151

Fig. 4 Segmentation results and Tanimoto coefficients (see Sect. 6) for imageswith 10%, 20% and 30%GaussianNoisewith andwithout smoothing,
λ1 = λ2 = 5, θ = 3

0

0.2

0.4

0.6

0.8

1

Fig. 5 Displayed is DM (x, y) using f2(x, y) for various ϑ values. The marker set is the same as that used in Fig. 3

Therefore, the final segmentation result is liable to include
unwanted objects. We look to address this problem through
the use of anti-markers. These are markers which indicate
objects that we do not want to segment, i.e. the opposite of
marker points, and we denote the set of anti-marker points by
AM.We propose to use a geodesic distancemap from the set
AM denoted by DAM (x, y) which penalises pixels near to
the set AM and does not add any penalty to those far away.
We could naïvely choose DAM (x, y) = 1 − D̃G AM (x, y)

where D̃G AM (x, y) is the normalised geodesic distance from
AM. However, this puts a large penalty on those pixels inside
the object we actually want to segment (as D̃G AM (x, y) to

those pixels is small). To avoid this problem, we propose the
following anti-marker distance term:

DAM (x, y) =
exp

(
−α̃D̃G AM (x, y)

)
− exp (−α̃)

1 − exp (−α̃)

where α̃ is a tuning parameter. We choose α̃ = 200 through-
out. This distance term ensures rapid decay of the penalty
away from the setAM but still enforces high penalty around
the anti-marker set itself. See Fig. 6 where a segmentation
resultwith andwithout anti-markers is shown.AsDAM (x, y)
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Marker and Anti-Marker SetOriginal Image Anti-Marker Distance Function

0

0.2

0.4

0.6

0.8

1
Segmentation With Anti-MarkersSegmentation Without Anti-Markers

Fig. 6 Left to right: original image, M (green) and AM (pink), segmentation result just using marker set, DAM (x, y) using anti-markers,
segmentation result using anti-markers. For these μ = 1, λ1 = λ2 = 5, θ = 25 (Color figure online)

decays rapidly fromAM, we do require that the anti-marker
set be close to the blurred edge and away from the object we
desire to segment.

3.4 The NewModel and Its Euler–Lagrange Equation

The proposed Geodesic Model. Putting the above three ingre-
dients together, we propose the model

min
u,c1,c2

{
FGEO(u, c1, c2)

=
∫

Ω

[
λ1(z(x, y) − c1)

2 − λ2(z(x, y) − c2)
2
]

u dΩ

+ μ

∫
Ω

g(|∇z(x, y)|)|∇u| dΩ + θ

∫
Ω

DG(x, y)u dΩ

+ α

∫
Ω

νε(u) dΩ
}
, (18)

where DG(x, y) = (DM (x, y) + DAM (x, y)) /2 and
DM (x, y) is the geodesic distance from the marker set M.
We computeDM (x, y) using (11) where f (x, y) = f2(x, y)

defined in (17). Using Calculus of Variations, solving (18)
with respect to c1, c2, with u fixed, leads to

c1(u) =
∫
Ω

u · z(x, y) dΩ∫
Ω

u dΩ
,

c2(u) =
∫
Ω

(1 − u) · z(x, y) dΩ∫
Ω

(1 − u) dΩ
, (19)

and the minimisation with respect to u (with c1 and c2 fixed)
gives the PDE

μ∇ ·
(

g(|∇z(x, y)|) ∇u

|∇u|ε2

)

−
[
λ1(z(x, y) − c1)

2 − λ2(z(x, y) − c2)
2
]

− θDG(x, y) − αν′
ε(u) = 0 (20)

in Ω , where we replace |∇u| with |∇u|ε2 =
√

u2
x + u2

y + ε2

to avoid zero denominator;we choose ε2 = 10−6 throughout.
We also have Neumann boundary conditions ∂u

∂n = 0 on ∂Ω

where n is the outward unit normal vector.
Next, we discuss a numerical scheme for solving this

PDE (20). However, it should be remarked that updating
c1(u), c2(u) should be done as soon as u is updated; practi-
cally, c1, c2 converge very quickly since the object intensity
c1 does not change much.

4 An Additive Operator Splitting Algorithm

Additive operator splitting (AOS) is a widely used method
[14,27,42] as seen from more recent works [2–5,36,38] on
the diffusion-type equation such as

∂u

∂t
= μ∇ · (G(u)∇u) − f . (21)

AOS allows us to split the two-dimensional problem into
two one-dimensional problems, which we solve and then
combine. Each one- dimensional problem gives rise to a
tridiagonal system of equations which can be solved effi-
ciently; hence, AOS is a very efficient method for solving
diffusion-like equations. AOS is a semi-implicit method and
permits far larger time steps than the corresponding explicit
schemes would. Hence, AOS is more stable than an explicit
method [42]. We rewrite the above equation as

∂u

∂t
= μ

(
∂x (G(u)∂x u) + ∂y

(
G(u)∂yu

) )− f ,

and after discretisation, we can rewrite this as [42]

uk+1 = 1

2

2∑
�=1

(
I − 2τμA�(u

k)

)−1 (
uk + τ f

)
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Fig. 7 a Exact penalty function
ν(u) and b, c νε(u) for different
ε values. a ν(u). b νε(u) for
ε = 1. c νε(u) for ε = 0.1
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Fig. 8 a ν′(u) (discontinuities
shown in red) and b, c ν′

ε(u) for
different ε values. a ν′(u). b
ν′
ε(u) for ε = 1. c ν′

ε(u) for
ε = 0.1 (Color figure online)
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where τ is the time step, A1(u) = ∂x (G(u)∂x ) and A2(u) =
∂y(G(u)∂y). For notational convenience, we write G =
G(u). The matrix A1(u) can be obtained as follows:

(
A1(u

k)uk+1
)

i, j
=
(

∂x

(
G∂x uk+1

))
i, j

=
(Gi+ 1

2 , j

h2
x

)
uk+1

i+1, j +
(Gi− 1

2 , j

h2
x

)
uk+1

i−1, j

−
(Gi+ 1

2 , j + Gi− 1
2 , j

h2
x

)
uk+1

i, j

and similarly to [36,38], for the half points in G, we take
the average of the surrounding pixels, for example Gi+ 1

2 , j =
Gi+1, j +Gi, j

2 . Therefore, we must solve two tridiagonal sys-
tems to obtain uk+1, and the Thomas algorithm allows us
to solve each of these efficiently [42]. The AOS method
described here assumes f does not depend on u; however,
in our case, it depends on ν′

ε(u) [see (20)] which has jumps
around 0 and 1, so the algorithm has stability issues. This
was noted in [38], and the authors adapted the formulation
of (20) to offset the changes in f . Here, we repeat their argu-
ments for adapting AOS when the exact penalty term ν′

ε(u)

is present (we refer to Figs. 7 and 8 for plots of the penalty
function and its derivative, respectively).

The main consideration is to extract a linear part out of
the nonlinearity in f = f (u). If we evaluate the Taylor
expansion of ν′

ε(u) around u = 0 and u = 1 and group
the terms into the constant and linear components in u, we
can, respectively, write ν′

ε(u) = a0(ε) + b0(ε)u + O(u2)

and ν′
ε(u) = a1(ε) + b1(ε)u + O(u2). We actually find that

b0(ε) = b1(ε) and denote the linear term as b from now on.
Therefore, for a change in u of δu around u = 0 and u = 1,
we can approximate the change in ν′

ε(u) by b · δu. To focus
on the jumps, define the interval in which ν′

ε(u) jumps as

Iζ := [0 − ζ, 0 + ζ ] ∪ [1 − ζ, 1 + ζ ]

and refine the linear function by

b̃k
i, j =

{
b, uk

i, j ∈ Iζ

0, else.

Using these, we can now offset the change in ν′
ε(u

k) by
changing the formulation (21) to

∂u

∂t
= μ∇ · (G(u)∇u) − αb̃ku + [

αb̃ku − f
]

or in AOS form uk+1 = uk + τμ∇ · (G(uk)∇uk+1) −
ταb̃kuk+1 + [

ταb̃kuk − f k
]
which, following the deriva-

tion in [38], can be reformulated as

uk+1 = 1

2

2∑
�=1

(
I + B̃k − 2τμA�

(
uk
))

︸ ︷︷ ︸
Q1

−1

((
I + B̃k

)
uk + τ f k

)

where B̃k = diag(ταb̃k). We note that Q1 is invertible as
it is strictly diagonally dominant. This scheme improves on
(21) as now, changes in f k are damped. However, it is found
in [38] that although this scheme does satisfy most of the
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discrete scale-space conditions ofWeickert [42] (which guar-
antee convergence of the scheme), it does not satisfy all of
them. In particular, thematrix Q1 does not have unit row sum
and is not symmetrical. The authors adapt the scheme above
to the equivalent

uk+1 = 1

2

2∑
�=1

(
I − 2τμ

(
I + B̃k

)−1
A�

(
uk
))

︸ ︷︷ ︸
Q2

−1

(
uk + τ

(
I + B̃k

)−1
f k
)

, (22)

where the matrix Q2 does have unit row sum; however, the
matrix is not always symmetrical. We can guarantee conver-
gence for ζ = 0.5 (in which case, Q2 must be symmetrical)
but we desire to use a small ζ to give a small interval Iζ .
We find experimentally that convergence is achieved for any
small value of ζ , which is due to the fact that at convergence
the solution u is almost binary [10]. Therefore, although ini-
tially Q2 is asymmetrical at some pixels, at convergence all
pixels have values which fall within Iζ and I + B̃k is a matrix
with all diagonal entries 1 + ταb. Therefore, we find that at
convergence Q2 is symmetrical and the discrete scale-space
conditions are all satisfied. In all of our tests, we fix ζ = 0.01.

Algorithm 1: Solution of the Geodesic Model

Set μ, λ, θ . Compute g(|∇z(x, y)|) = 1
1+βG |∇z(x,y)|2 and

DG(x, y) = D0
G (x,y)

||D0
G (x,y)||L∞ ,

with D0
G(x, y) the solution of (11). Initialise u(0) arbitrarily.

for i ter = 1 to max_i terations do
Calculate c1 and c2 using (19).
Calculate r = λ1(z − c1)2 − λ2(z − c2)2 + θDG .
Set α = ||r ||L∞ .
Calculate f k = r + αν′

ε(u
k).

Update uk to uk+1 using the AOS scheme (22).
end for
u∗ ← uk .

5 Existence and Uniqueness of the Viscosity
Solution

In this section, we use the viscosity solution framework and
the work of Ishii and Sato [20] to prove that, for a class
of PDEs in image segmentation, the solution exists and is
unique. In particular, we prove the existence and uniqueness
of the viscosity solution for the PDE which is determined
by the Euler–Lagrange equation for the Geodesic Model.
Throughout, we will assume Ω is a bounded domain with
C1 boundary.

From the work of [12,20], we have the following Theorem
for analysing the solution of a partial differential equation of
the form F(x, u, Du, D2u) = 0 where F : Rn × R ×R

n ×
M n → R, M n is the set of n × n symmetrical matrices,
Du is the gradient of u and D2u is the Hessian of u. For
simplicity, and in a slight abuse of notation, we use x := x
for the vector of a general point in Rn .

Theorem 2 (Theorem 3.1 [20]) Assume that the following
conditions (C1)–(C2) and (I1)–(I7) hold. Then, for each u0 ∈
C(Ω) there is a unique viscosity solution u ∈ C([0, T )×Ω)

of (23) and (24) satisfying (25).

∂u

∂t
+ F(t, x, u, Du, D2u) = 0 in Q = (0, T ) × Ω,

(23)

B(x, Du) = 0 in S = (0, T ) × ∂Ω, (24)

u(0, x) = u0(x) for x ∈ Ω. (25)

Conditions (C1)–(C2)

(C1) F(t, x, u, p, X) ≤ F(t, x, v, p, X) for u ≤ v.
(C2) F(t, x, u, p, X) ≤ F(t, x, u, p, Y ) for X , Y ∈ M n

and Y ≤ X .

Conditions (I1)–(I7) Assume Ω is a bounded domain in Rn

with C1 boundary.

(I1) F ∈ C
([0, T ] × Ω × R × (Rn\{0}) × M n

)
.

(I2) There exists a constant γ ∈ R such that for each
(t, x, p, X) ∈ [0, T ] × Ω × (Rn\{0}) ×M n the func-
tion u �→ F(t, x, u, p, X) − γ u is non-decreasing on
R.

(I3) F is continuous at (t, x, u, 0, 0) for any (t, x, u) ∈
[0, T ] × Ω × R in the sense that

−∞ < F∗(t, x, u, 0, 0) = F∗(t, x, u, 0, 0) < ∞

holds. Here, F∗ and F∗ denote, respectively, the upper
and lower semi-continuous envelopes of F , which are
defined on [0, T ] × Ω × R × R

n × M n .
(I4) B ∈ C (Rn × R

n)∩C1,1 (Rn × (Rn\{0})), where C1,1

is the Hölder functional space.
(I5) For each x ∈ R

n , the function p �→ B(x, p) is posi-
tively homogeneous of degree one in p, i.e. B(x, λp) =
λB(x, p) for all λ ≥ 0 and p ∈ R

n\{0}.
(I6) There exists a positive constant � such that 〈n(x), Dp

B(x, p)〉 ≥ � for all x ∈ ∂Ω and p ∈ R
n\{0}. Here,

n(x) denotes the unit outward normal vector of Ω at
x ∈ ∂Ω .

(I7) For each R > 0, there exists a non-decreasing con-
tinuous function ωR : [0,∞) → [0,∞) satisfying
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ωR(0) = 0 such that if X , Y ∈ M n and μ1, μ2 ∈
[0,∞) satisfy

[
X 0
0 Y

]
≤ μ1

[
I −I

−I I

]
+ μ2

[
I 0
0 I

]
(26)

then

F(t, x, u, p, X) − F(t, y, u, q,−Y ) ≥
− ωR

(
μ1

(
|x − y|2 + ρ(p, q)2

)
+ μ2 + |p − q|

+ |x − y| (max(|p|, |q|) + 1)
)

for all t ∈ [0, T ], x, y ∈ Ω, u ∈ R, with |u| ≤ R,

p, q ∈ R
n\{0} and ρ(p, q) = min

( |p−q|
min(|p|,|q|) , 1

)
.

5.1 Existence and Uniqueness for the Geodesic
Model

We now prove that there exists a unique solution for the PDE
(20) resulting from the minimisation of the functional for the
Geodesic Model (18).

Remark 3 It is important to note that although the values of
c1 and c2 depend on u, they are fixed when we solve the PDE
for u and therefore the problem is a local one and Theorem 2
can be applied. Once we update c1 and c2, using the updated
u, then we fix them again and apply Theorem 2. In practice,
as we near convergence, we find c1 and c2 stabilise so we
typically stop updating c1 and c2 once the change in both
values is below a tolerance.

To apply the above theorem to the proposed model (20),
the key step will be to verify the nine conditions. First, we
multiply (20) by the factor |∇u|ε2 , obtaining the nonlinear
PDE

− μ|∇u|ε2∇ ·
(

G(x,∇z)
∇u

|∇u|ε2

)

+ |∇u|ε2
[
λ1(z(x, y) − c1)

2 − λ2(z(x, y) − c2)
2

+ θDG(x, y) + αν′
ε(u)

]
= 0

(27)

where G(x,∇z) = g(|∇z(x, y)|). We can rewrite this as

F(x, u, p, X) = −μ trace (A(x, p)X) − μ〈∇G(x,∇z), p〉
+|p|k(u) + |p| f (x) = 0 (28)

where f (x) = λ1(z(x) − c1)2 − λ2(z(x) − c2)2, k(u) =
αν′

ε(u), p = (p1, p2) = |∇u|ε2 , X is the Hessian of u and

A(x, p) =
⎡
⎣ G(x,∇z)

p22
|p|2 −G(x,∇z) p1 p2

|p|2
−G(x,∇z) p1 p2

|p|2 G(x,∇z)
p21

|p|2

⎤
⎦ (29)

Theorem 4 (Theory for the Geodesic Model) The parabolic
PDE ∂u

∂t + F(t, x, u, Du, D2u) = 0 with u0 = u(0, x) ∈
C(Ω), F as defined in (28) and Neumann boundary condi-
tions has a unique solution u = u(t, x) in C([0, T ) × Ω).

Proof By Theorem 2, it remains to verify that F satisfies
(C1)–(C2) and (I1)–(I7). We will show that each of the con-
ditions is satisfied. Most are simple to show, the exception
being (I7) which is non-trivial.

(C1): Equation (28) only has dependence on u in the
term k(u); we therefore have a restriction on the choice of
k, requiring k(v) ≥ k(u) for v ≥ u. This is satisfied for
k(u) = αν′

ε(u) with ν′
ε(u) defined as in (7).

(C2): We find for arbitrary s = (s1, s2) ∈ R
2 that

sT A(x, p)s ≥ 0 and so A(x, p) ≥ 0. It follows that
−trace(A(x, p)X) ≤ −trace(A(x, p)Y ); therefore, this con-
dition is satisfied.

(I1): A(x, p) is only singular at p = 0; however, it is
continuous elsewhere and satisfies this condition.

(I2): In F , the only term which depends on u is k(u) =
αν′

ε(u). With ν′
ε(u) defined as in (7), in the limit ε → 0 this

function is a step function from −2 on (∞, 0), 0 on [0, 1]
and 2 on (0,∞). So we can choose any constant ε < −2.
With ε �= 0, there is smoothing at the end of the intervals;
however, there is still a lower bound on L for ν′

ε(u) and we
can choose any constant γ < L .

(I3): F is continuous at (x, 0, 0) for any x ∈ Ω because
F∗(x, 0, 0) = F∗(x, 0, 0) = 0. Hence, this condition is sat-
isfied.

(I4):TheEuler–Lagrange equations giveNeumannbound-
ary conditions

B(x,∇u) = ∂u

∂n
= n · ∇ u = 〈n,∇u〉 = 0

on ∂Ω , where n is the outward unit normal vector, and we
see that B(x,∇u) ∈ C1,1 (Rn × R

n\{0}) and therefore this
condition is satisfied.

(I5): By the definition above, B(x, λ∇u) = 〈n, λ∇u〉 =
λ〈n,∇u〉 = λB(x,∇u). So this condition is satisfied.

(I6): As before, we can use the definition, 〈n(x),

Dp B(x, p)〉 = 〈n(x), n(x)〉 = |n(x)|2. So we can choose
� = 1 and the condition is satisfied.

(I7): This is the most involved condition to prove and uses
many other results. For clarity of the overall paper, we post-
pone the proof to ‘Appendix A’.
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5.2 Generalisation to Other RelatedModels

Theorems 2 and 4 can be generalised to a few other models.
This amounts to writing each model as a PDE of the form
(28) where k(u) is monotone and f (x), k(u) are bounded.
This is summarised in the following corollary:

Corollary 5 Assume that c1 and c2 are fixed, with the terms
f (x) and k(u), respectively, defined as follows for a few
related models:

• Chan–Vese [11]: f (x) = fCV(x) := λ1(z(x) − c1)2 −
λ2(z(x) − c2)2, k(u) = 0.

• Chan–Vese (Convex) [10]: f (x) = fCV(x), k(u) =
αν′

ε(u).
• Geodesic active contours [8] and Gout et al. [25]:

f (x) = 0, k(u) = 0.
• Nguyen et al. [30]: f (x) = α (PB(x, y) − PF(x, y)) +

(1 − α) (1 − 2P(x, y)), k(u) = 0.
• Spencer–Chen (Convex) [38]: f (x) = fCV(x) +

θDE (x), k(u) = αν′
ε(u).

Then, if we define a PDE of the general form

−μ∇ ·
(

G(x)
∇u

|∇u|ε2

)
+ k(u) + f (x) = 0

with

(i) Neumann boundary conditions ∂u
∂n = 0 (n the outward

normal unit vector)
(ii) k(u) satisfies k(u) ≥ k(v) if u ≥ v

(iii) k(u) and f (x) are bounded; and
(iv) G(x) = I d or G(x) = f (|∇z(x)|) = 1

1+|∇z(x)|2 ,

we have a unique solution u ∈ C([0, T )×Ω) for a given ini-
tialisation. Consequently, we conclude that all above models
admit a unique solution.

Proof The conditions (i)–(iv) are hold for all of thesemodels.
All of these models require Neumann boundary conditions
and use the permitted G(x). The monotonicity of ν′

ε(u) is
discussed in the proof of (C1) for Theorem 4, and the bound-
edness of f (x) and k(u) is clear in all cases.

Remark 6 Theorem4 andCorollary 5 also generalise to cases
where G(x) = 1

1+β|∇z|2 and to G(x) = D(x)g(|∇z|) where
D(x) is a distance function such as in [15–17,38]. The proof
is very similar to that shown in Sect. 5.1, relying on Lipschitz
continuity of the function G(x).

Remark 7 We cannot apply the classical viscosity solution
framework to the Rada–Chen model [36] as this is a non-
local problem with k(u) = 2ν

(∫
Ω

Hε(u) dΩ − A1
)
.

6 Numerical Results

In this section, we will demonstrate the advantages of
the Geodesic Model for selective image segmentation over
related and previous models. Specifically, we shall compare

• M1—the Nguyen et al. [30] model;
• M2—the Rada and Chen [36] model;
• M3—the convex Spencer–Chen [38] model;
• M4—the convex Liu et al. [26] model;
• M5—the reformulated Rada–Chen model with geodesic
distance penalty (see Remark 8);

• M6 —the reformulated Liu et al. model with geodesic
distance penalty (see Remark 8);

• M7 —the proposed convex Geodesic Model (Algo-
rithm 1).

Remark 8 (A note on M5 and M6) We include M5–M6
to test how the geodesic distance penalty term can improve
M2 [36] and M4 [26]. These were obtained as follows:

• we extendM2–M5 simply by including the geodesic dis-
tance function DG(x, u) in the functional.

• we extendM4–M6with aminor reformulation to include
data fitting terms. Specifically, the model M6 is

min
u,c1,c2

{
FCV ω(u, c1, c2)

=
∫

Ω

ω2(x, y)
[
λ1(z(x, y) − c1)

2

− λ2(z(x, y) − c2)
2] u dΩ + μ

∫
Ω

g(|∇z|))|∇u| dΩ

+ θ

∫
Ω

DG(x, y)u dΩ + α

∫
Ω

νε(u) dΩ
}

(30)

for μ, λ1, λ2 nonnegative fixed parameters, α and νε(u)

as defined in (7) and ω as defined for the convex Liu
et al. model. This is a convex model and is the same
as the proposed Geodesic Model M7 but with weighted
intensity fitting terms.

Four sets of test results are shown below. In Test 1, we
compare modelsM1–M6 to the proposed modelM7 for two
images which are hard to segment. The first is a CT scan
from which we would like to segment the lower portion of
the heart, the second is an MRI scan of a knee and we would
like to segment the top of the Tibia. See Fig. 9 for the test
images and the marker sets used in the experiments. In Test
2, we will review the sensitivity of the proposed model to
the main parameters. In Test 3, we will give several results
achieved by the model using marker and anti-marker sets. In
Test 4, we show the initialisation independence and marker
independence of the Geodesic Model on real images.
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Fig. 9 Test 1 setting: a Image 1; b Image 1 with marker and anti-marker set shown in green and pink, respectively; c Test Image 2; d Image 2
with marker set shown (Color figure online)

Fig. 10 Visual comparison of M1–M7 results for Test Image 1. M1
segmented part of the object,M2–M4 failed to segment the object,M5
gave a reasonable result (though not accurate) and, M6 and M7 cor-
rectly segmented the object. a M1 (Left to right:) Test Image 1 with
markers (red) and anti-markers (blue), foreground segmentation and

background segmentation (we used published software, no parameter
choice required). b M2 λ = 1, γ = 10. c M3 λ = 5, θ = 3. d M4
λ = 1/4. e M5 λ = 5, γ = 3, θ = 1

10 . f M6 λ = 15, θ = 3. g M7
λ = 10, θ = 1 (Color figure online)

For M7, we denote by ũ the thresholded u > γ̃ at some
value γ̃ ∈ (0, 1) to define the segmented region. Although
the threshold can be chosen arbitrarily in (0, 1) from thework
by [10, Theorem 1] and [38], we usually take γ̃ = 0.5.

Quantitative comparisons. To measure the quality of a
segmentation, we use the Tanimoto coefficient (TC) (or Jac-
card coefficient [21]) defined by

TC(ũ,GT) = |ũ ∩ GT|
|ũ ∪ GT|

where GT is the ‘ground truth’ segmentation and ũ is the
result from a particular model. This measure takes value one
for a segmentationwhich coincides perfectly with the ground
truth and reduces to zero as the quality of the segmentation
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Fig. 11 Visual comparison of M1–M7 results for Test Image 2. M1
segmented part of the object, M2–M4 failed to segment the object,
M5, M6 and M7 correctly segmented the object. a M1 (Left to right):
Test Image 2 with markers (red) and anti-markers (blue), foreground

segmentation and background segmentation (we used published soft-
ware, no parameter choice required). b M2 λ = 1, γ = 15. c M3
λ = 5, θ = 1. d M4 λ = 1/8. e M5 λ = 1, γ = 15, θ = 1

10 . f M6
λ = 15, θ = 1. g M7 λ = 10, θ = 1 (Color figure online)

Fig. 12 Parameter maps for M3, M6 and M7. a Original image. b Ground truth segmentation. c M3 TC values for various λ and θ values. d M6
TC values for various λ and θ values. e M7 TC values for various λ and θ values
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Fig. 13 Parameter maps for M3, M6 and M7. a Original image with marker set. b Ground truth segmentation. c M3 TC values for various λ and
θ values. d M6 TC values for various λ and θ values. e M7 TC values for various λ and θ values

gets worse. In the other tests, where a ground truth is not
available, we use visual plots.

Parameter choices and implementation. We set μ = 1,
τ = 10−2 and vary λ = λ1 = λ2 and θ . Following [10], we
let α = ||λ1(z − c1)2 − λ2(z − c2)2 + θDG(x, y)||L∞ . To
implement themarker points inMATLAB,we useroipoly
for choosing a small number of points by clicking and
also freedraw which allows the user to draw a path of
marker points. The stopping criteria used are the dynamic
residual falling below a given threshold; i.e. once ||uk+1 −
uk ||/||uk || < tol, the iterations stop (we use tol = 10−6 in
the tests shown).

Test 1—Comparison of models M1–M7. In this test, we
give the segmentation results for models M1–M7 for the
two challenging test images shown in Fig. 9. The marker and
anti-marker sets used in the experiments are also shown in
this figure. After extensive parameter tuning, the best final
segmentation results for each of the models are shown in
Figs. 10 and 11. For M1–M4, we obtain incorrect segmen-
tations in both cases. In particular, the results of M2 and
M4 are interesting as the former gives poor results for both
images, and the latter gives a reasonable result for Test Image
1 and a poor result for Test Image 2. In the case of M2, the
regularisation term includes the edge detector and the dis-
tance penalty term [see (4)]. It is precisely this which permits
the poor result in Figs. 10b and 11b as the edge detector is

Table 1 Tanimoto coefficient for various ε2 values, segmenting the
images in Figs. 12 and 13

ε2 Knee segmentation
(Fig. 12)

Circle segmentation
(Fig. 13)

10−10 0.97287 1.00000

10−8 0.97287 1.00000

10−6 0.97235 1.00000

10−4 0.96562 1.00000

10−2 0.94463 1.00000

100 0.90660 1.00000

102 0.89573 1.00000

104 0.89159 1.00000

zero along the contour and the fitting terms are satisfied there
(both intensity and area constraints)—the distance term is not
large enough to counteract the effect of these. In the case of
M4, the distance term and edge detector are separated from
the regulariser and are used to weight the Chan–Vese fitting
terms [see (9)]. The poor segmentation in Fig. 11(b) is due
to the Chan–Vese terms encouraging segmentation of bright
objects (in this case), and weighting ω enforces these terms
at all edges in the image and near M. In experiments, we
find thatM4 performs well when the object to segment is of
approximately the highest or lowest intensity in the image;
however, when this is not the case, results tend to be poor.
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Fig. 14 Three further test
results obtained using our
Geodesic Model M7, all with
parameters θ = 5, λ = 5. The
first row shows the original
image with the marker set (plus
anti-marker set), the second row
shows the final segmentation
result and the final row shows
the residual history

We see that, in both cases, models M5 and M6 give much
improved results to M2 and M4 (obtained by incorporat-
ing the geodesic distance penalty into each). The proposed
Geodesic ModelM7 gives an accurate segmentation in both
cases. It remains to compare M5, M6 and M7. We see that
M5 is a non-convexmodel (and cannot bemade convex [38]);
therefore, results are initialisation dependent. It also requires
one more parameter thanM6 andM7, and an accurate setM
to give a reasonable area constraint in (4). These limitations
lead us to concludeM6 andM7 are better choices thanM5.
In the case of M6, it has the same number of parameters as
M7 and gives good results. M6 can be viewed as the model
M7 with weighted intensity fitting terms [compare (18) and
(30)]. Experimentally, we find that the same quality of seg-
mentation result can be achievedwith bothmodels generally;
however,M6 is more parameter sensitive thanM7. This can
be seen in the parameter map in Fig. 12 with M7 giving an
accurate result for a wider range of parameters than M6. To
show the improvement ofM7 over previous models, we also
give an image in Fig. 13 which can be accurately segmented
with M7 but the correct result is never achieved with M6
(or M3). Therefore, we find that M7 outperforms all other
models tested M1–M6.

Remark 9 Models M2–M7 are coded in MATLAB and use
exactly the same marker/anti-marker set. For modelM1, the

software of Nguyen et al. requires marker and anti-marker
sets to be input to an interface. These have been drawn as
close as possible to match those used in the MATLAB code.

Test 2—Test of M7’s sensitivity to changes in its main
parameters. In this test, we demonstrate that the proposed
Geodesic Model is robust to changes in the main parame-
ters. The main parameters in (20) are μ, λ1, λ2, θ and ε2.
In all tests, we set μ = 1, which is simply a rescaling of
the other parameters, and we set λ = λ1 = λ2. In the first
example, in Fig. 12, we compare the TC value for various
λ and θ values for segmentation of a bone in a knee scan.
We see that the segmentation is very good for a larger range
of θ and λ values. For the second example, in Fig. 13, we
show an image and marker set for which the Spencer–Chen
model (M3) andmodifiedLiu et al.modelM6 cannot achieve
the desired segmentation for any parameter range, but which
can be attained for the Geodesic Model for a vast range of
parameters. The final example, in Table 1, compares the TC
values for various ε2 values with fixed parameters λ = 2
and θ = 2. We use the images and ground truth as shown in
Figs. 12 and 13 : on the synthetic circles image, we obtain
a perfect segmentation for all values of ε2 tested, and in the
case of the knee segmentation the results are almost iden-
tical for any ε2 < 10−6, above which the quality slowly
deteriorates.
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Fig. 15 Test 4 on M7’s initialisations (θ = 5, λ = 5). a The origi-
nal image with marker set indicated; b initialisation 1 using the image
itself; c segmentation result from Initialisation 1; d Initialisation 2 away

from the object to be segmented; e segmentation 2 from Initialisation
2. ClearlyM7 gives the same result

Fig. 16 Test 4 on M7’s marker set (θ = 5, λ = 3). Row 1 shows the
original image with three marker points, the normalised geodesic dis-
tance map and the final segmentation result. Row 2 shows the original

image with one marker point, the normalised geodesic distance map
and the final segmentation result. Clearly, the second and third columns
are the same for different marker points. Thus, M7 is robust

Test 3—Further results from the Geodesic Model M7. In
this test, we give somemedical segmentation results obtained
using the Geodesic Model M7. The results are shown in
Fig. 14. In the final two columns, we use anti-markers to
demonstrate how to overcome blurred edges and low- con-
trast edges in an image. These are challenging, and it is
pleasing to see the correctly segmented results.

Test 4—Initialisation andmarker set independence. In the
first example, in Fig. 15, we see how the convex Geodesic
Model M7 gives the same segmentation result regardless
of initialisation, as expected of a convex model. Hence, the
model is flexible in implementation. In our experiments we
find that the algorithm converges to the final solution faster
whenwe initialise using the polygon formed from themarker
points rather than an arbitrary initialisation. In the second
example, in Fig. 16, we show intuitively how Model M7 is

robust to the number of markers and the location of themark-
erswithin the object to be segmented. TheEuclidean distance
term, used in the Spencer–ChenmodelM3, is sensitive to the
position and number of marker points; however, regardless
of where the markers are chosen, and how many are chosen,
the geodesic distance map will be almost identical.

7 Conclusions

In this paper, a new convex selective segmentation model has
been proposed, using geodesic distance as a penalty term.
This model gives results that are unachievable by alterna-
tive selective segmentation models and are also more robust
to the parameter choices. Adaptations to the penalty term
have been discussed which make it robust to noisy images
and blurry edges whilst also penalising objects far from the
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marker set (in a Euclidean distance sense). A proof for the
existence and uniqueness of the viscosity solution to the PDE
given by the Euler–Lagrange equation for themodel has been
given (which applies to an entire class of image segmenta-
tion PDEs). Finally, we have confirmed the advantages of
using the geodesic distance with some experimental results.
Future works will look for further extension of selective
segmentation to other frameworks such as using high-order
regularizers [13,45] where only incomplete theories exist.
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Appendix A: Proof that Condition (I7) Holds
in Theorem 4

Using the assumption in (26), we write

(Xr , r) + (Y s, s) = r T Xr + sT Y s

≤ μ1
[
r T sT

] [ I −I
−I I

] [
r
s

]

+ μ2
[
r T sT

] [I 0
0 I

] [
r
s

]

= μ1|r − s|2 + μ2

(
|r |2 + |s|2

)
.

Note that matrix A from (29) is a real symmetrical matrix and
decomposes as A = Q DQT = Q D1/2D1/2QT = B BT

with Q orthonormal and B = Q D1/2. Successively define
r = B(p)ei and s = B(p)ei for all (ei ), an orthonormal
basis, and obtain

(Xr , r) = r T Xr =
∑

i

(Bei )
T X(Bei ) =

∑
i

eT
i BT X Bei

= trace(BT X B) = trace(A(x, p)X).

Therefore, we can write

trace(A(x, p)X) + trace(A(y, q)Y ) = (X B(p)ei , B(p)ei )

+ (Y B(q)ei , B(q)ei )

≤ μ1|B(p)ei − B(q)ei |2

+ μ2

(
|B(p)ei |2 + |B(q)ei |2

)

= μ1trace
(
(B(p) − B(q))T (B(p)

−B(q))) + μ2 (G(x) + G(y)) .

We now focus on reformulating the first term, and we start
by decomposing A(x, p) as follows:

A(x, p) =
[

p1
|p| − p2

|p|
p2
|p|

p1
|p|

][
0 0
0 G(x)

][ p1
|p|

p2
|p|

− p2
|p|

p1
|p|

]

=
[

p1
|p| − p2

|p|
p2
|p|

p1
|p|

][
0 0
0

√
G(x)

] [
0 0
0

√
G(x)

][ p1
|p|

p2
|p|

− p2
|p|

p1
|p|

]

so we have A = B BT where

B(p) =
[
0 − p2

|p|
√

G(x)

0 p1
|p|

√
G(x)

]
.

Using this, we compute

trace
(
(B(p) − B(q))T (B(p) − B(q))

)

=
∣∣∣∣ p

|p|
√

G(x) − q

|q|
√

G(y)

∣∣∣∣
2

.

Substituting this in the overall trace sum, we have

trace(A(x, p)X) + trace(A(y, q)Y )

≤ μ1

∣∣∣∣ p

|p|
√

G(x) − q

|q|
√

G(y)

∣∣∣∣
2

+ 2μ2θ.

as G(x) < θ (G is bounded) for all x ∈ Ω . Focussing on the
first term in this expression, we compute

∣∣∣∣ p

|p|
√

G(x) − q

|q|
√

G(y)

∣∣∣∣
2

=
∣∣∣∣ p

|p|
√

G(x) − p

|p|
√

G(y)

+ p

|p|
√

G(y) − q

|q|
√

G(y)

∣∣∣∣
2

≤ 2
(√

G(x) −√
G(y)

)2 + 2G(y)

∣∣∣∣ p

|p| − q

|q|
∣∣∣∣
2

≤ 2
(√

G(x) −√
G(y)

)2 + 8θρ(p, q)2

where ρ = min
( |p−q|
min(|p|,|q|) , 1

)
. This uses inequality∣∣∣ p

|p| − q
|q|
∣∣∣2 ≤ 2ρ(p, q) (see [15–18,24,34]). We now note

that g(s) = 1
1+s2

is Lipschitz continuous with Lipschitz con-

stant 3
√
3

8 .
Note. In the Geodesic Model, we fix G(x) = g(|∇z|).

Therefore, assuming G(x) and
√

G(x) as Lipschitz requires
us to assume that the underlying z is a smooth function [16].
Thankfully, z is typically provided as a smoothed image after
some filtering (e.g. Gaussian smoothing) and we can assume
regularity of z.
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Remark 10 It is less clear that
√

G(x) is Lipschitz, we now
prove it explicitly. Firstly, it is relatively easy to prove that

√
G(x) −√

G(y) ≤ 2

3
√
3

∣∣∣∣ |∇z(x)| − |∇z(y)|
∣∣∣∣

by letting K (s) = √
g(s) and we find sup

s
|K ′(s)| = 2

3
√
3
.

We now need to prove that |∇z(x)| is Lipschitz also. Take
h(x) = |∇z(x)|; then, by a remark in [16], we can conclude
∃ ζ < ∞ such that

∣∣∣∣ |∇z(x)| − |∇z(y)|
∣∣∣∣ ≤ ζ |x − y|

and so
√

G(x) is Lipschitz with constant 2
3
√
3
ζ .

After some computations, we obtain

∣∣∣∣ p

|p|
√

G(x) − q

|q|
√

G(y)

∣∣∣∣
2

≤ 2

(
2

3
√
3
ζ

)2

|x − y|2 + 8θρ(p, q)2

= 8

27
ζ 2 |x − y|2 + 8θρ(p, q)2.

Following the results in [15–18,24,34] we have

|∇G(x) − ∇G(y)| |p| < κ|p||x − y|
≤ κ max(|p|, |q|)|x − y|.

so overall

〈∇G(x), p〉 − 〈∇G(y), q〉
≤ κ max(|p|, |q|)|x − y| + η|p − q|

where |∇G(y)| < η < ∞. Finally,wenote that− (|p| − |q|)
= |q| − |p| ≤

∣∣∣|q| − |p|
∣∣∣ ≤ |p − q|. If we now write

− (F(t, x, u, p, X) − F(t, y, u, q,−Y ))

= μ (trace(A(x, p)X)

+trace(A(y, q)Y ))

+ μ (〈∇G(x), p〉 − 〈∇G(y), q〉)
− (|p| − |q|) k(u) − |p| f (x) + |q| f (y)

≤ μμ1

(
8

27
ζ 2|x − y|2 + 8θρ(p, q)2

)
+ 2μμ2θ

+ μκ max(|p|, |q|)|x − y| + μη|p − q|
− (|p| − |q|)

(
k(u) + 2max

x∈Ω
f (x)

)

≤ μμ1

(
8

27
ζ 2|x − y|2 + 8θρ(p, q)2

)
+ 2μμ2θ

+ μκ (max (|p|, |q|) + 1) |x − y|
+ μη|p − q| + C1|p − q|.

where C1 = max
x∈Ω

(
k(u) + 2max

x∈Ω
f (x)

)
(we must assume

k(u), f (x) are bounded). Hence, we have

F(t, x, u, p, X) − F(t, y, u, q,−Y ) ≥
− max

{
8

27
ζ 2μ, 8μθ, 2μθ,μη + C1, μκ

}

[
μ1

(
|x − y|2 + ρ(p, q)2

)
+ μ2

+ |p − q| + |x − y| (max(|p|, |q|) + 1)
]

and setting ωR = max
{ 8
27ζ

2μ, 8μθ, 2θ, η + C1, μκ
}

R,
this is a non-decreasing continuous function,maps [0,∞) →
[0,∞) and ωR(0) = 0 as required. We have proven that con-
dition (I7) is satisfied.
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