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Abstract
At the present stage, LiDAR-based SLAM solutions are dominated by ICP and its variants, while the BA optimization method
that can improve the pose consistency has received little attention. Therefore,we proposeMULO, a low-drift and robust LiDAR
odometry using BA optimization with plane and cylinder landmarks. In the front-end, a coarse-to-fine direct pose estimation
method provides the prior pose to the back-end. And in the back-end, we propose a novel three-stage landmark extraction and
data association strategy for plane and cylinder, which is robust and efficient. Meanwhile, a stable minimum parameterization
method for cylinder landmarks is proposed for optimization. In order to fully utilize the LiDAR information at long distances,
we propose a new sliding window structure consisting of a TinyWindow and a SuperWindow. Finally, we jointly optimize the
two kinds of landmarks and scan poses in this sliding window. The proposed system is evaluated on public dataset and our
dataset, and experimental results show that our system is competitive compared with the state-of-the-art LiDAR odometrys.

Keywords SLAM · LiDAR odometry · MUlti-Landmarks · Plane and cylinder landmarks

1 Introduction

Simultaneous localization and mapping (SLAM) plays an
important role in automatic driving and other tasks involved
in intelligent mobile robot. In recent years, SLAM schemes
based on various sensors have been proposed. Among them,
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the LiDAR-based method can be applied in most scenarios
because it is not affected by lighting conditions. Never-
theless, as a well-recognized method that can improve the
consistency of pose, bundle adjustment(BA) has rarely been
investigated in the LiDAR-based system. This paper devotes
to exploring the LiDAR BA method that are applicable to
indoor and outdoor environments.

Nowadays, LiDAR-based methods are mainly based on
the ICP framework [1] and its variants [2–5], which realize
the pose estimation through a scan-to-map or scan-to-model
registration.However, the sparsity anddisorder of theLIDAR
point cloud make it impossible to be observed repeatedly
in multiple frames directly. Although some feature extrac-
tion methods for point cloud have been proposed [6–8], the
dense point cloud structure requirement makes these meth-
ods unsuitable for sparse LiDAR points.

As one of the few landmarks that can be observed repeat-
edly in multiple frames with sparse point clouds, the plane
landmark is receiving increasing attention from the LiDAR
SLAM systems [9–15]. However, these systems are only
applicable to the structured scenes with enough plane land-
marks and are not highly adaptable in outdoor environments.

In this paper, the BA method for LiDAR is further stud-
ied. We find that using plane landmarks alone cannot cope
with the environment lacking planes, while there is a large
amount of cylinder information such as tree trunks and light
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poles, especially in urban roads scene. Therefore, we pro-
pose a novel LiDAR odometry MULO(as shown in Fig. 1,
which combines the plane and the cylinder landmarks for BA
optimization.

The main contributions of this paper are as follows:

• A new robust and efficient three-stage landmark extrac-
tion and data association strategy for plane and cylinder.

• A new calculating stable parameterization method for
cylinder landmark.

• A novel sliding window structure consisting of a Tiny-
Window and a SuperWindow that can fully utilize
long-range information fromLIDAR in the BA optimiza-
tion stage.

• Extensive experiments are conducted on UrbanLoco
dataset [16] and our dataset with outdoor and indoor sce-
narios. Our systemMULO is competitive compared with
the state-of-the-art LiDAR odometrys.

2 RelatedWork

For the current LiDAR-based SLAM system, the ICP and
its variants are still the main methods for pose estimation.
LOAM [2] extracts plane and edge points by calculating the
curvature on each scan-line, then a scan-to-scan and a scan-
to-map registration are conducted successively by minimiz-
ing the point-to-line(plane) distance. LEGO-LOAM [3] is a
ground-optimized LiDAR odometry for unmanned ground
vehicles, which segments the ground points to assist feature
extraction. A two-step Levenberg-Marquardt optimization is
conducted to perform real-time six degree-of-freedom pose
estimation. F-LOAM [4] is another computationally efficient
and accurate version of LOAM, which use a non-iterative
two-stage distortion compensation method to reduce the

computational cost. MULLS [5] is a versatile LiDAR SLAM
that jointly optimizes point-to-point (plane, line) error met-
rics with a linear approximation to estimate the ego-motion.
In the back-end, MULLS conducts a hierarchical pose graph
optimization to reduce the drift of trajectory. All the above
systems use the ICP variant methods to perform pose estima-
tion by extracting different features. However, these features
can not be repeatedly observed in multiple frames.

For the purpose of extracting repeatable observed features
in multiple frames, several feature-based methods have been
explored. Fast Point Feature Histograms (FPFH) [7] forms
a multi-dimensional histogram to geometrically describe the
nearest neighbors of points, which can be used in real-time
applications.Viewpoint FeatureHistogram (VFH) [8],which
proposes a new descriptor consisting of an extended FPFH
descriptor and a new signature, achieves better performance
than FPFH. However, for these methods, the requirement of
dense point clouds makes them unsuitable for sparse LiDAR
points.

In recent years, some SLAM systems have begun to con-
sider plane landmarks. LIPS [10] and Eigen-Factors [11]
use different parameterization methods to add plane land-
marks into the optimization process. LIC-FUSION2.0 [17]
and MINS [18] add plane landmarks into the multi-sensor
optimization process. BALM[9] introduces a newkind ofBA
method using plane and edge landmarks. Instead of optimiz-
ing the landmark parameters and scan poses simultaneously,
BALM analytically solves landmarks in closed-form before
the BA optimization with a second order derivative and a
highly efficient Gauss-Newton method. π -LSAM [15] pro-
poses a plane adjustment(PA) method suitable for indoor
environments, which can reduce the optimization complexity
by π -factor. However, in the scene lack of plane landmarks,
these systems are easy to degenerate, and it is not accurate
to directly treat trunks and light poles as line landmarks.

Fig. 1 An illustration of the
proposed MULO system: (a)
raw LiDAR points, (b) different
types of points extracted from
the scan(noise, cylinder, plane),
(c) plane landmarks and cylinder
landmarks extracted from the
local map(plane, cylinder), (d)
map generated by MULO
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Furthermore, they are not suitable for complex outdoor envi-
ronments without considering the dynamic objects. In this
paper, cylinder landmarks are proposed to avoid degener-
ation, and a foreground segmentation method is used to
eliminate the influence of dynamic objects.

3 SystemOverview

The pipeline of the proposed system is shown in Fig. 2. The
system receives input from a 3D LiDAR, the ego-motion is
calculated by a coarse-to-fine direct pose estimation method.
Meanwhile, the planar points and the columnar points are
extracted from the raw points. Then a foreground segmenta-
tion is performed to filter the dynamic objects for the planar
points, and motion compensation is directly conducted on
these two kinds of feature points. With the cursory pose cal-
culated by the front-end, data association is performed for
both types of landmarks. Then new landmarks are extracted
from the feature points with no corresponding landmarks. At
last, a maximum a posteriori (MAP) problem is solved to
jointly optimize the scan poses and the parameterized cylin-
der and plane landmarks in a sliding window.

4 Coarse-to-fine Direct Pose Estimation
Front-end

In the front-end, we refer to the direct method proposed by
FAST-LIO2 [19]. Since onlyLiDARsensor is used in our sys-
tem, the LiDAR raw point clouds are directly downsampled
as different resolutions. The data association and a scan-to-
map direct registration are performed from low resolution to
high resolution with an initial pose predicted by the uniform

motion model. We minimize the point-to-plane distance by
the L-M method to obtain the pose of the current frame:

min
T

N∑

k=1

∥∥∥nTk (T pk − ck)
∥∥∥
2
, (1)

where T ∈ SE (3) denotes the pose of the current frame,
pk denotes the point in the current LiDAR scan described
in the current frame. nk and ck denote the Hessen normal
and the center of the corresponding planar patch extracted in
the global point cloud map. Finally, motion compensation is
performed using the uniform motion model.

5 Landmark Parameterization

5.1 Plane Landmark

We use plane patch [18] consisting of a center point ppp
and a Hesse normal npp to describe a plane landmark.
Although this representation is convenient for data associ-
ation, it is over-parameterized for non-linear optimization.
Accordingly, closest point(CP) [10] is used as the mini-
mal representation of the plane landmark in the optimization
stage. TheCP representation indicating the point on the plane
with minimum distance to the measured frame’s origin can
be described as a Hesse normal vector n and a distance scalar
d. It has the following relations:

� = nd, (2)
[
n
d

]
=

[
�/ ‖�‖

‖�‖
]

. (3)

Fig. 2 System overview. The system consists of a front-end and a back-end. Front-end performs direct pose estimation and feature points extraction.
Back-end includes data association, landmark extraction and sliding window optimization
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The transformable relationship between the plane patch
and the CP is as follows:

� = npp(npp
T ppp). (4)

5.2 Cylinder Landmark

We propose a set of novel representations to describe the
cylinder landmark. A center point pcc, a direction nor-
mal ncc and a radius rcc describe the cylinder landmark
for data association, we call them cylinder chunk(CC). In
addition, a minimal parameterization form called minimal
cylinder(MC) is proposed for optimization, which use a 3D
unit vector nmc with 2 DOF, a radius rmc with 1 DOF and a
3D position pmc with 2 DOF to describe the 5 DOF cylin-
der landmark. In this method, pmc is constrained on a plane
whose Hesse normal directs the axis where ncc has the max-
imum component. An illustration of this parameterization
method is shown in Fig. 3. In this way, point to cylinder
distance can be directly calculated without other transforma-
tions. The transformable relationship between the CC and
the MC is as follows:

⎡

⎣
nmc

pmc

rmc

⎤

⎦ =
⎡

⎣
ncc/ ‖ncc‖

pcc
rcc

⎤

⎦ . (5)

The coordinate components of pmc along the axis corre-
sponding to the largest coordinate component of ncc are fixed
during the optimization process.

6 Landmark Extraction And Data Association

For the the plane landmark and the cylinder landmark, a three-
stage flow for landmark extraction and data association is
proposed, which are feature points extraction, observation
generation and new landmark extraction.

Fig. 3 An example illustrates the MC. The red line denotes the 2 DOF
unit vector ncc . Since the maximum component of ncc is along the z-
axis, the blue point pmc is constrained on a grey plane whose Hesse
normal directs the z-axis. In addition, the green line denotes the radius
rmc

6.1 Cylinder Landmark

As shown in Fig. 4, we first detect the points where dis-
continuousness occurred in each consecutive scan-line. If
the distance between two points where discontinuousness
occurred is close, the points between these two points are
regarded as the candidate feature points on a cylinder land-
mark. Finally, we use the mean value point called columnar
point to represent this group of points to accelerate the data
association process.Adetailed flowof this approach is shown
in Algorithm 1.

Algorithm 1 Columnar points extraction.
for all scanlinei ∈ LiDAR scan do

bFindSuccess ← f alse
bNewCyl ← f alse
for all p j−1, p j ∈ scanlinei do

rangeDis ← Range(p j−1) − Range(p j )

if rangeDis > MaxRangeT hres then
bNewCyl ← true
idxStart ← j

end if
if bNewCyl == true then

if −rangeDis > MaxRangeT hres then
bNewCyl ← f alse
idx End ← j − 1
groupWidth ← Distance(pidxEnd , pidxStart )
if groupWidth < MaxWidthT hres then

bFindSuccess ← true
end if

end if
end if
if bFindSuccess == true then

bFindSuccess ← f alse
newGroup ← points between pidxStart , pidxEnd
newColpoint ← MeanValue(newGroup)
Add newGroup to vectorGroups.
Add newColpoint to vectorColpoints.

end if
end for

end for

All cylinder landmarks in the slidingwindow are collected
to build a landmark map in the observation generation stage.
For every columnar point pcol in the current frame, we use a
KD-tree to search the nearest cylinder landmark in the land-
mark map. A point to cylinder distance score is calculated to
verify the correspondence between the columnar point and
the cylinder landmark. The score is defined as follows:

scorecyl = ‖ncc × ( pcol − pcc)‖ . (6)

The group of points represented by columnar point is
regarded as this cylinder landmark’s observation in the cur-
rent frame if the above score is smaller than a threshold.

In the new landmark extraction stage, we first attempt
to extract landmarks in a single frame. All columnar points
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Fig. 4 Columnar points
extraction. (a) Points between
the two points where
discontinuousness occurred are
collected. (b) Columnar points
are extracted from each group of
points

that failed to find the corresponding landmark are organized
as a KD-tree. The nearest k points to each point are col-
lected, and a principal component analysis(PCA) method is
used to fit and generate new cylinder landmarks. The crite-
rion of the successful fitting is λ1/λ2 > 10, where λ1 and
λ2 are the maximum and medium eigenvalues calculated by
PCA. However, the sparsity of the LiDAR point cloud causes
some landmarks cannot be extracted from a single frame.
Therefore, we further register the remaining columnar points
without corresponding landmarks in each frame into a local
map using the optimized pose, then we organize the map as
a KD-tree for searching and extracting landmarks like the
method in the single frame. With this approach, we can per-
form landmark extraction and data association steadily and
without omission.

6.2 Plane Landmark

As shown in Fig. 5, we find that points on a planar surface
patch in a scan-line can be approximately expressed as a
straight line. Thus, if the consecutive points with low cur-
vature in each scan-line can be fitted into a straight line, we
use the center point with direction vector information to rep-
resent this group of points. This point is called the planar
point. With the above method, we can obtain the exact plane
candidate points and significantly reduce the search time of
the data association process.

A flow similar to the cylinder landmark is applied in the
observation generation stage. Furthermore, a point-to-plane
distance score and a direction score verify the correspon-
dence between planar point and plane landmark. These two

scores are defined as:

score1pl = ( pp − ppp)T npp/
∥∥npp

∥∥ , (7)

score2pl = nTpnpp/(
∥∥np

∥∥ ∥∥npp
∥∥). (8)

Similar to the new landmark extraction stage of the cylin-
der landmark, we extract the plane landmarks in a single
frame and in local map successively. In each process, we
find the nearest k planar points of each point in the planar
point map, and then there are two possible situations:

• If the direction vectors of two of these points are approx-
imately intersecting and these two points with direction
information fit on a plane, a new plane landmark is gen-
erated

• If the direction vectors of three of these points are approx-
imately parallel, we use two of these points with their
direction information to fit a plane.Anewplane landmark
is generated if the third point with direction information
is on this plane.

6.3 Dynamic Removal

Since the dynamic object is hardly detected on the cylinder
landmark, we only filter the dynamic objects on the plane
landmark. We used the method in [3] to segment ground
points. For non-ground points, we segment the foreground
and background of the scene. Background points gener-
ally appear on the wall of high buildings, and foreground
points are considered dynamic objects, so the plane land-

Fig. 5 Planar points extraction.
(a) Points belonging to the same
straight line are marked as the
same color. (b) Planar points
with direction information are
extracted from each group of
points
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Table 1 Ablation experiment Algorithm Data sequence
Outdoor_1(trans- HK-Data20190316-2(RM-
lation error(m)) SE w.r.t SPAN-CPT(m))

MULO 1.451 1.370

MULO-Undistort 11.750 5.421

MULO-Cylinder Fail 1.382

MULO-SuperWindow 8.588 15.314

MULO-BA 4.276 14.258

marks existing in the foreground are removed as dynamic
objects directly.

7 SlidingWindowOptimization

7.1 SlidingWindow Structure

Since LiDAR has a long measurement distance and a large
observation perspective, it is difficult for a short sliding win-
dow used in the vision-based system to fully use the LiDAR
information in a large scene. We propose a novel sliding
window structure with a distance-based keyframe selection
strategy. It consists of two sliding windows called TinyWin-
dow and SuperWindow, which use 1 meter and 5 meters as
the keyframe selection threshold, respectively. There are five
operations in this sliding window structure:

• A new frame is added to the TinyWindow.
• The second new frame is slided out and discarded if it is
not a keyframe of the TinyWindow.

• The oldest keyframe in the TinyWindow is slided out
and discarded if the TinyWindow is full and it is not the
keyframe of the SuperWindow.

• The oldest keyframe in the TinyWindow is slided out and
added to the SuperWindow if the TinyWindow is full and
it is the keyframe of the SuperWindow.

• The oldest keyframe in the SuperWindow is slided out
and discarded if the SuperWindow is full.

7.2 Joint Optimization

The whole state in the sliding window is as follows:

⎧
⎨

⎩

χ = [x0, · · ·, xr , c0, · · ·, cm,�0, · · ·,�n]
xi = [w pi , wqi ], i ∈ [0, r ]
ck = [nmck , pmck , rmck ], k ∈ [0,m]

, (9)

where xi is the i-th LiDAR frame state in the sliding win-
dow, ck and �s are respectively the k-th cylinder landmark
parameter and the s-th plane landmark parameter expressed
in their anchor frame in the sliding window.

The sum of the norm of cylinder and plane measurement
residuals are used to obtain a maximum a posteriori estima-
tion:

min
χ

{∑ ∥∥rc(xi , x j , ck)
∥∥2 + ∑ ∥∥r p(xi , x j ,�s)

∥∥2
}

. (10)

rc(xi , x j , ck) is the residual of cylinder landmark measure-
ment, and it is defined as:

rc(xi , x j , ck) =∥∥∥inimck × (i p j
cu − i pimck )

∥∥∥ − ∥∥inimck

∥∥ r imck ,
(11)

i p j
cu = wqi

−1
(wq j

j p j
cu + w p j ) − w pi ), (12)

where i p j
cu is the u-th cylinder point of the j-th frame repre-

sented in the i-th frame, and it is the observation of the k-th
cylinder landmark of the i-th frame. inimck ,

i pimck and r imck
are the components of the k-th cylinder landmark ck of the
i-th frame represented in the i-th frame.

Table 2 RMSE translation error w.r.t SPAN-CPT. (meters)

Algorithm Data sequence
HK-Data20190426-2 HK-Data20190316-2 HK-Data20190117 HK-Data20190426-1

LEGO-LOAM 3.431 1.473 1.427 2.859

F-LOAM 3.553 2.223 4.749 3.295

BALM 26.274 2.631 35.535 39.648

MULLS 2.507 3.017 1.282 2.574

MULO 2.287 1.370 0.964 3.016
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Table 3 End-to-end translation error. (meters)

Algorithm Data sequence
Indoor_1 Indoor_2 Outdoor_1

LEGO-LOAM 0.066 0.450 2.300

F-LOAM 0.189 0.596 8.520

BALM 0.061 11.268 13.996

MULLS 33.081 9.935 27.608

MULO 0.059 0.338 1.451

r p(xi , x j ,�s) is the residual of plane landmark measure-
ment, and it is defined as:

r p(xi , x j ,�s) = inipps
T
(i p j

pv
− i pipps )/

∥∥∥inipps
∥∥∥ , (13)

i p j
pv

= wqi
−1

(wq j
j p j

pv
+ w p j ) − w pi ), (14)

where i p j
pv

is the v-th plane point of the j-th frame repre-
sented in the i-th frame, and it is the observation of the s-th
plane landmark of the i-th frame. inipps and i pipps are the
components of the s-th plane landmark �s of the i-th frame
represented in the i-th frame.

8 Experiment

This section describes a series of experiments to analyze our
proposed system. All the experiments are conducted on a
PC equipped with an AMD Ryzen7 4800H CPU and 16G
memory.

8.1 Dataset

The public dataset we used is UrbanLoco [16], an urban road
dataset with a large number of pedestrians and vehicles. We
only use the Hong Kong part of the dataset, the LiDAR used
in this part is Velodyne HDL 32E, and the ground truth is
provided by Novatel SPAN-CPT.

We also use a Robosense RS-LiDAR-16 to collect real-
world indoor and outdoor datasets.We critically start and end
the trajectory with the same point to evaluate the accuracy
by calculating the difference between the estimated poses of
the start and the end points.

8.2 Ablation Experiment

In order to test the different parts of our system, we eval-
uate the following variants of our system on the outdoor_1
sequence of our dataset and HK-Data20190316-2 sequence
of UrbanLoco:

• MULO: Full set system.
• MULO-Undistort: Close motion compensation.
• MULO-Cylinder: The cylinder landmark is ignored.
• MULO-SuperWindow: Only the TinyWindow is used.
• MULO-BA: Only the front-end is used.

Table 1 is the result of the ablation experiment, which
shows that our LiDAR BA method significantly improves
the pose accuracy of the front-end. In the case of less plane
information, only using plane landmarks maybe not work,
and cylinder landmarks can avoid the effects of it. Because

Fig. 6 Trajectories of our indoor and outdoor datasets. (a) indoor_1, (b) indoor_2, (3) outdoor_1
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Fig. 7 Trajectories of the UrbanLoco dataset. (a) HK-Data20190426-2, (b) HK-Data20190316-2, (3) HK-Data20190117, (4) HK-Data20190426-1

LiDAR has a longmeasurement range, combining the Super-
WindowwithTinyWindowcanmake better use of theLiDAR
information from a long distance. In addition, motion com-
pensation also helps improve the system’s accuracy.

8.3 Comparison with other Algorithms

We compare our system with LEGO-LOAM [3], F-LOAM
[4], MULLS [5] and BALM [9]. The experimental results
are shown in Tables 2 and 3. The trajectories are shown in
Figs. 6 and 7. We modified the motion compensation mod-
ule to a universal method for MULLS system and achieved
higher accuracy on UrbanLoco Dataset. However, the results
using the parameters provided by MULLS on our dataset
are not ideal, which may be because the algorithm is not
adapted for LiDAR with sparse point clouds. The results
show that our proposed system achieves better accuracy
than the other four state-of-the-art LiDAR SLAM systems
except for HK-Data20190426-1 sequence, which is because
dynamic removal is only used in the back-end, the bad prior
pose affects the result of data association. A better front-end
will have a better performance.

In addition, we can notice that the ICP-based methods
such as LEGO-LOAM, F-LOAM, MULLS can work sta-
bly in various scenarios. This benefits from the fact that the
ICP methods use a large number of points for alignment
and does not require very accurate feature extraction, which
makes it highly robust to plane missing scenes and dynamic
scenes. However, this also leads to the ICP-based methods
cannot further improve the trajectory accuracy. On the other
hand,BALM,which performsBAoptimization by accurately
extracting plane and line landmarks, is highly vulnerable to
dynamic and planemissing scenes due to its non-robust land-
mark extraction and data association methods. In contrast,
our approach guarantees the robustness of landmark extrac-
tion and data association by a three-stage strategy. The use of
cylinder landmarks further improves the system’s accuracy
and robustness. In addtion, our proposed new slidingwindow

structure also gives the system higher accuracy than BALM
in static structured scenes.

8.4 Runtime Analysis

Table 4 shows the runtime of MULO, which is tested on
outdoor_1 sequence of our dataset with a Robosense RS-
LiDAR-16 LiDAR. Our front-end achieves real-time, which
takes 76ms for one scan. The back-end takes 143ms per
round, but it is executed in a separate thread and only for
keyframe. Therefore, our system can reach real-time on a
moderate PC.

9 Conclusions

This paper proposes a novel lidar odometry MULO, which
performs BA optimization using plane and cylinder land-
marks. In addition, we present a new three-stage landmark
extraction and data association strategy for plane and cylin-
der, which is efficient and robust. Furthermore, a new
calculating stable parameterizationmethod for cylinder land-
mark is proposed to model cylinder in optimization stage. A
proposed sliding window that consists of a TinyWindow and
a SuperWindow is used to conduct BA optimization with the
two kinds of landmarks and scan poses. Finally, MULO is
tested on UrbanLoco dataset and our dataset, and the results

Table 4 Time consumption for each module of our system. (ms)

Stage Time
consumption

Front-end Feature points extraction 31

Direct pose estimation 45

Back-end Date association & 44

New landmarks extraction

Sliding window optimization 99
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show that our system is competitive compared with the state-
of-the-art LiDAR odometrys.
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