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Abstract
In an overwhelming demand scenario, such as the SARS-CoV-2 pandemic, pressure over 
health systems may outburst their predicted capacity to deal with such extreme situations. 
Therefore, in order to successfully face a health emergency, scientific evidence and vali-
dated models are needed to provide real-time information that could be applied by any 
health center, especially for high-risk populations, such as transplant recipients. We have 
developed a hybrid prediction model whose accuracy relative to several alternative con-
figurations has been validated through a battery of clustering techniques. Using hospital 
admission data from a cohort of hospitalized transplant patients, our hybrid Data Envel-
opment Analysis (DEA)—Artificial Neural Network (ANN) model extrapolates the pro-
gression towards severe COVID-19 disease with an accuracy of 96.3%, outperforming 
any competing model, such as logistic regression (65.5%) and random forest (44.8%). In 
this regard, DEA-ANN allows us to categorize the evolution of patients through the values 
of the analyses performed at hospital admission. Our prediction model may help guiding 
COVID-19 management through the identification of key predictors that permit a sustain-
able management of resources in a patient-centered model.
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1 Introduction

Health systems are designed to meet the daily health care demand of a designated region. 
But in an overwhelming demand scenario, such as the SARS-CoV-2 pandemic, pressure 
over health systems may outburst their predicted capacity to deal with such extreme situa-
tions (Emanuel 2020). One of the critical points in the context of a pandemic of such mag-
nitude is the potential collapse of the health care system, leading to suboptimal treatment 
due to a lack of resources and a subsequent increase in mortality. Therefore, in order to 
successfully face a health emergency, scientific evidence and validated models are needed 
to provide real-time information that could be used by any health center (Pencina et  al. 
2020; Wynants 2020a).

Solid organ transplant (SOT) recipients are considered a high-risk population for any 
infection (Kumar and Ison 2019; Ison and Hirsch 2019; Silva et al. 2020). Preliminary data 
on SARS-CoV-2 infection shows a mortality as high as 28% (Fernández-Ruiz et al. 2020; 
Akalin et al. 2020) compared to 7.2% among the general population (Onder et al. 2020). 
It must be highlighted that fatalities may be attributed to chronic immunosuppression and 
its associated risks, since these patients are also older and present more comorbidities 
(Fernández-Ruiz et al. 2020; Akalin et al. 2020; Alberici et al. 2020a; Pereira et al. 2020; 
The 2019; Guan 2020).

Transplant centers have adapted their policies and developed specific circuits for SOT 
recipients in the current pandemic scenario (Martino et al. 2020; Boyarsky 2020; Angelico 
2020). In particular, strategies for the management of immunosuppression were designed 
based on pathophysiology and reports of case series, rather than solid studies (Boyarsky 
2020; Alberici et al. 2020b).

Predictive models are particularly relevant in situations in which solid evidence is scarce 
or absent since they may help identifying those patients with high risk of unfavorable out-
comes. In the COVID-19 pandemic, they may be of particular benefit for high risk but also 
for low-volume populations, such as SOT recipients. Although some models are already 
being developed in kidney transplantation scenarios (Loupy 2019; Aubert 2019), and even 
in SARS-CoV-2 infection ones (Wynants 2020a; Giordano 2020; Weitz et al. 2020), they 
are often limited to large cohorts of patients.

The hybrid technique proposed exploits the capacity of Artificial Neural Networks 
(ANNs) to extrapolate the clinical course of patients using the results of the analyses per-
formed at hospital admission while learning from the categories defined through Data 
Envelopment Analysis (DEA). This latter method is generally applied in industrial engi-
neering to measure the efficiency of production processes (Misiunas et al. 2016; Ahmad-
vand and Pishvaee 2018). Its applications in medicine to evaluate the course of patients 
have overlooked its qualities as a categorization mechanism, a particularly useful feature 
when dealing with relatively small datasets (Misiunas et al. 2016; Ahmadvand and Pish-
vaee 2018). The importance of the suggested technique and its main contribution consist 
in the substantial improvement in the accuracy of the ANN relative to a direct implementa-
tion of the latter to the categories defined directly from the output variables.

Therefore, our objective is to develop a predictive model based on the implementa-
tion of DEA-ANN to the data retrieved from our cohort of SOT patients with COVID-19 
at hospital admission and extrapolate the clinical course of the disease while identifying 
patients at risk of progressing towards severe disease.

The paper presents the main results obtained from the implementation of our 
hybrid model to the data retrieved—and analyzed—by the team of doctors. Additional 
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methodological explanations regarding the design of the study, together with the formal 
definition of the hybrid model and the alternative configurations considered, are provided 
in the “Appendix” sections.

1.1  Literature review

Physicians tend to distrust the results derived from artificial intelligence models (Bae 2020; 
Wynants 2020b; Editorial. 2021). This behavior can be intuitively verified through the 
results obtained in the current paper, where, as we will observe, the machine and deep 
learning techniques presented do not perform particularly well on their own. Despite these 
drawbacks, artificial intelligence techniques have been consistently applied to medical set-
tings within the current pandemic scenario. Among the main applications considered, we 
must highlight their use as early detection mechanisms and monitoring devices (Arora 
et al. 2020; Rasheed 2020; Vaishya et al. 2020). That is, the use of artificial intelligence 
techniques in medical environments has mainly focused on disease identification and prop-
agation models (Rashid and Wang 2021). The predictive capacity of these techniques is 
quite limited, particularly when dealing with small amounts of data and requiring physi-
cians to consider multiple outputs to extrapolate the potential evolution of patients, as is the 
case in the current paper.

A classification alternative to artificial intelligence models is given by the implementa-
tion of multiple criteria decision making techniques. These techniques are usually applied 
to rank COVID-19 symptoms in terms of their importance and imply a considerable degree 
of subjectivity in the selection of the weights assigned to the criteria (Alzubaidi et  al. 
2021). Their extrapolation capacity is also limited. More precisely, their rankings are con-
ditioned by the relative importance assigned to the different decision criteria while lacking 
an explicit formalization of the actual interactions taking place between the input and out-
put variables (Albahri et al. 2021).

Kidney transplant studies apply machine learning techniques such as random forest 
(Massie 2020), and artificial intelligence models such as Bayesian networks (Siga 2020) 
to estimate the relative importance that different factors have on the potential evolution of 
transplant patients. These techniques remain constrained in their capacity to select several 
potential output variables simultaneously, imposing a restriction on their ability to extrapo-
late the actual behavior of patients.

Outside the medical domain, hybrid models defining evaluation indexes combined 
with machine learning techniques such as random forest have been applied to analyze, for 
instance, the credit risk of borrowers (Rao et al. 2020a, b). Similarly, DEA has been con-
sistently combined with ANN to generate classification models exploiting the main fea-
tures of both techniques (Toloo et al. 2015). However, hybrid models combining DEA and 
ANN are generally based on the efficiency indicators provided by DEA, namely, the �∗

o
 

variables derived from Eq. (1) in the “Appendix” section, a consistent feature that remains 
mainly unmodified nowadays (Tsolas et al. 2020).

The main problem with this latter approach when applied to a medical context is the fact 
that physicians do not have an intuitive interpretation for the notion of efficiency. Moreo-
ver, imposing the efficiency value as the main selection mechanism implies a substantial 
loss of information, ignoring the importance of the slack variables introduced in Eq.  (2) 
within the “Appendix” section. Both these drawbacks motivate the design of our slack-
based performance index, whose contribution to the identification and classification capac-
ities of different machine learning techniques is summarized in the next section.
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2  Contribution

The paper balances three very different research areas. First, it provides a precise descrip-
tion of the main analyses performed by the medical team, illustrating their evaluation pro-
cesses, and defining a benchmark that can be easily recognized by other physicians. Sec-
ond, it extends the standard analysis of industrial engineers on DEA to generate an index 
from the slack variables provided by the corresponding optimization model. That is, the 
use of the slack variables to create a relative performance index that summarizes the poten-
tial evolution of patients constitutes a contribution in itself. This index extends the poten-
tial applications of DEA beyond standard efficiency considerations, which, in  situations 
such as the one analyzed in the paper, may not be of particular use to physicians. Third, 
the artificial intelligence techniques employed—and enhanced through the DEA index—
provide a general picture of the results to be expected by physicians when dealing with 
relatively small data sets combining both quantitative discrete and categorical variables. 
We demonstrate how our hybrid technique performs when data are scarce while requiring 
basic behavioral guidelines from the simulations so that the model can be understood and 
applied by physicians under regular circumstances.

The balance among areas has been kept by describing the main medical variables and 
standard statistical analyses within the main body of the paper while relegating the optimi-
zation techniques and other detailed medical exams to the “Appendixes”. In this regard, the 
results obtained from the hybrid DEA-ANN model and the alternative machine learning 
techniques and output configurations implemented constitute the main focus of the paper.

The main objective of the manuscript is to illustrate the enhanced identification capac-
ity that results from the design of a hybrid model based on the collaboration of physicians, 
engineers and computer scientists. As already noted, models combining DEA with artifi-
cial intelligence techniques already exist, but the corresponding literature tends to focus on 
the efficiency scores of the decision making units (Toloo et al. 2015).

From a medical viewpoint, efficiency remains an elusive and complex variable to inter-
pret. Physicians, especially in emergency situations, require instruments based on tech-
niques that—while constrained by a relatively low amount of data and a substantial number 
of potential output variables—provide them with a set of guidelines describing the poten-
tial consequences from an initial evaluation assessment. Artificial intelligence and deep 
learning models such as neural networks constitute the required techniques. However, their 
identification and classification capacities are substantially constrained when dealing with 
few observations and multiple categorical variables. The incorporation of the performance 
index derived from the implementation of DEA allows us to overcome these drawbacks, 
leading to a hybrid model whose identification and classification capacities improve sub-
stantially upon those of the artificial intelligence techniques applied unilaterally.

3  Results

3.1  Patient characteristics

During the study period 1006 recipients were visited for regular follow-up or medical 
issues. Thirty-eight consecutive adult transplant recipients developed confirmed COVID-
19 disease requiring hospital admission (Fig. 1), with a mean age of 59 years (range, 33 
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to 87). Twenty-nine recipients (76.3%) had hypertension, 12 (31.6%) had diabetes mel-
litus, and 3 (7.9%) had lung comorbidities. Nine patients (23.7%) had been transplanted 
before, and 16 (42.1%) were under treatment with angiotensin-converting-enzyme inhibi-
tors (ACEI) or angiotensin-receptor blockers (ARB) at hospital admission.

Most recipients consulted with fever (94.7%), cough (60.5%), dyspnea (39.5%) and diar-
rhea (28.9%), and were admitted after a mean of 7.32 ± 5.87 days from the beginning of 
symptoms. Thirty-one patients (81.6%) developed pneumonia, sixteen of them (42.1% of 
the total population) with probable or confirmed bacterial super-infection. Patient charac-
teristics are summarized in Table 1 and Extended Data Table S1.

3.2  Infectious and transplant management

Following our center protocol, lopinavir/ritonavir (73.7%), hydroxychloroquine (94.7%), 
and azithromycin (92.1%) were given as antiviral therapy. Eighteen recipients (47.4%) 
required tocilizumab and 17 (44.7%) methylprednisolone pulses. During the follow-up, 
five patients (13.2%) died with a functioning graft, and 22 (57.9%) developed an acute 
kidney injury. Thirty patients (78.9%) were discharged from the hospital after a mean of 
12.02 ± 6.74 days from admission. Clinical and laboratory data are summarized in Table 1 
and Extended Data Table S2.

Fig. 1  Transplant recipients controlled or attended at the transplant unit. Patients were followed-up from 
March 3th to April 24th, 2020, as either regular follow-ups, or contacted due to COVID-19 suspicion or 
other reasons. All patients were asked to report suspicious symptoms. Only patients with high evidence of 
SARS-CoV-19 infection requiring hospital admission were included in the analysis
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Table 1  Demographic Characteristics at Hospital Admission, infectious and immunosuppressive therapy 
management, and clinical outcomes in Adult Transplant Recipients Hospitalized with COVID-19

Mean age in years (s.d.) (range) 59.34 (13.26) (33–87)
Male sex, n (%) 23 (60.5)
Comorbidities, n (%)
 Hypertension 29 (76.3)
 Diabetes mellitus 12 (31.6)
 Chronic obstructive pulmonary disease 3 (7.9)

Previous transplants, n (%) 9 (23.7)
ACEI/ARB treatment, n (%) 16 (42.1)
Main presenting symptom, n (%)
 Fever 36 (94.7)
 Cough 23 (60.5)
 Dyspnea 15 (39.5)
 Diarrhea 11 (28.9)

Positive SARS-CoV-2 test, n (%) 33 (86.68)
Pneumonia, n (%)
 No 7 (18.4)
 Unilateral 6 (15.8)
 Bilateral 25 (65.8)

Pulmonary Thromboembolism 2 (5.3)
Bacterial co-infection, n (%) 16 (42.1)
Mean time from symptom to hospital admission (s.d.) (range) 7.32 (5.87) (0–21)
COVID-19 intention drug use, n (%)
 Lopinavir/Ritonavir 28 (73.7)
 Mena days of Lopinavir/Ritonavir (s.d.) (range) 6.82 (3.49) (1–14)
 Hydroxychloroquine 36 (94.7)
 Mean days of Hydroxychloroquine (s.d.) (range) 5.58 (1.88) (1–10)
 Azithromycin 36 (92.1)
 Mean days of Azithromycin (s.d.) (range) 5.52 (1.94) (5–15)

COVID-19 rescue therapy, n (%)
 Tocilizumab 18 (47.4)
 Steroid pulse 17 (44.7)
 Other drugs (anakinra, interferon, baricitinib) 6 (15.8)

Immunosuppressive approach, n/total (%)
 Calcineurin inhibitor withdraw 30/33 (90.9)
 Antimetabolite withdraw 21/22 (95.4)
 mTOR inhibitor withdraw 16/16 (100)
 Prednisone withdraw 0/32 (0.0)

Stop ACEI/ARB treatment, n/total (%) 12/16 (75.0)
Outcomes, n (%)
Mean days at hospital (s.d.) (range) 12.02 (6.74) (1–31)
Stay at Intensive Care Unit, n (%) 9 (23.7)
Acute Kidney Injury, n (%) 22 (57.9)
Renal replacement therapy, n/total (%) 2/22 (9.1)
Acute graft rejection, n (%) 1 (2.6)
Graft loss, n (%) 6 (15.4)
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3.3  Comparative analysis of the poor clinical course of COVID‑19

In order to evaluate the primary composite outcomes, we analyzed the clinical worsen-
ing profile of recipients in Table  2. Twenty-four recipients (63.2%) fulfilled the criteria 
for clinical worsening behavior. Cough as a presenting symptom (P = 0.000), pneumonia 
(P = 0.011), and high levels of lactate dehydrogenase (LDH) (P = 0.031) were admission 
factors associated with complicated clinical evolutions. Lopinavir/ritonavir and azithro-
mycin were used more frequently in patients displaying a poor evolution. Death-censored 
graft loss was higher in the composite-group (P = 0.049), absent differences in the manage-
ment of immunosuppressive therapy. Although a non-significant trend was evidenced in 
patient and graft survival, no patient died due to COVID-19 in the non-composite-event 
group. When considering multivariate analyses, cough was the differential risk factor at 
admission.

Table 1  (continued)

Decease-censored graft loss, n/total (%) 1/6 (16.7)
Death, n (%) 5 (13.2)
Discharged from hospital, n (%) 30 (78.9)

Results include all recipients who were hospitalized with COVID-19 from March 3 to April 24, and follow-
up till April 27, 2020
ACEI Angiotensin-converting-enzyme inhibitors, ARB angiotensin-receptor blockers

Table 2  Comparative analysis of composite events

* Results include all recipients who were hospitalized with COVID-19 from March 3 to April 24, and fol-
lowed-up till April 27, 2020
χ2 test (or Fisher’s exact test whenever appropriate), Student’s t test, and analysis of variance (Mann–Whit-
ney test)

Primary composite outcomes*

Variable Composite- events (N = 24) Non-composite 
events (N = 14)

P value

Mean age in years, (s.d.) (range) 56.53 (13.27) 64.15 (12.14) 0.088
Diabetes mellitus, n (%) 4 (16.7) 8 (57.1) 0.020
Cough as presenting symptom, n (%) 20 (83.3) 3 (21.4) 0.000
Dyspnea, n (%) 12 (50.0) 3 (21.4) 0.097
Pneumonia, n (%)
 No 1 (4.2) 6 (42.9) 0.011
 Unilateral 4 (16.7) 2 (14.2)
 Bilateral 19 (79.2) 6 (42.9)

Mean Lactate dehydrogenase (U/L), (s.d.) 413.91 (119.43) 308.04 (119.49) 0.031
Lopinavir/Ritonavir, n (%) 22 (91.7) 6 (42.9) 0.002
Azithromycin, n (%) 24 (100.0) 11 (78.6) 0.043
Mean days at hospital, (s.d.) 14.55 (6.07) 7.39 (5.47) 0.002
Progression in Radiology findings, n (%) 17 (70.8) 3 (21.4) 0.028
Graft loss, n (%) 6 (25.0) 0 (0.0) 0.049
Death, n (%) 5 (20.8) 0 (0.0) 0.085
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Nine patients (23.7%) were admitted to the ICU (refer to the Extended Data Table S3). 
Interestingly, cough, pneumonia (P = 0.039), and high levels of LDH (P = 0.030) prevailed 
as the differential presenting symptoms.

3.4  Prediction models for COVID‑19 severity

Figure 2 provides a flowchart describing the implementation and evaluation stages of the 
hybrid model and the alternative configurations described through the current section. The 
index generated by implementing DEA before being incorporated into the ANN allows 
us to identify the relative performance of each patient across the variables composing the 
input set. The intuition validating this result can be inferred from the clustering qualities of 
the index, already observable in Fig. 3. As a result, we can create average profiles of the 
patients composing each performance category. Figure 4 provides a concise description of 
the main variables where patients underperform, with higher values representing relatively 
worse performances. For instance, note that patients composing the worst quartile exhibit 
highly suboptimal performances for Cough as presenting symptom, Pneumonia, and Days 
from starting symptoms to hospital admission. Patients located in the third quartile per-
form considerably better, with suboptimality arising for Hypertension, Pneumonia, Acute 
kidney injury and Cough as presenting symptom, describing a similar profile to that of the 
patients composing the best quartile.

The battery of techniques described in Table 3 has been presented to illustrate the rela-
tive performance of the different configurations and their stability. We want to avoid select-
ing a biased evaluation technique favoring our model while ignoring others where the com-
peting configurations outperform the suggested hybrid. The hybrid DEA model delivers the 
highest accuracy (96.3%) relative to any of the alternative configurations when considering 
the ANN that constitutes the main object of analysis. It also outperforms the alternative 
configurations when considering two well-known techniques such as logistic regression 
(77.8%) and random forest (codified as bagged trees by the MATLAB interface, 55.6%).

Finally, Table  3 illustrates how the suggested hybrid model tends to outperform the 
alternative configurations when considering the remaining set of techniques. We have 
emphasized the highest accuracy score achieved by each configuration through the whole 
battery of remaining machine learning tests, with the hybrid model performing consider-
ably better than any of the alternatives.

4  Discussion

The SARS-CoV-2 infection has become a devastating pandemic worldwide that has pushed 
all health systems (regardless of their geography) to extreme limits, causing an unprec-
edented consumption of resources. Due to the potential severity of COVID-19, ICUs have 
been one of the most needed health devices. In this sense, it is key to determine which 
patients are candidates to intensive cares, exhaustively evaluating the benefit but also the 
damage that these intensive measures can cause to patients with extremely high morbidity 
and mortality.

SOT recipients are more prone to opportunistic infections and worse outcomes from 
community acquired infections. In patients with the COVID-19 disease, an ICU admis-
sion rate as high as 34% (Pereira et al. 2020) and a mortality of 28% have been reported 
(Fernández-Ruiz et  al. 2020; Akalin et  al. 2020). These features provide valuable data 
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Fig. 2  Implementation and evaluation stages of the selection process: hybrid model versus alternative con-
figurations
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regarding patient outcomes, but their small cohort sizes and heterogeneity of therapeutic 
approaches preclude the extrapolation of data into practical decision making.

In the general population, advanced age is associated with a higher risk of ICU admis-
sion and mortality (Zhou 2020; Huang 2020). In our composite model, cough, pneumo-
nia, and biochemical parameters at hospital admission, but not age, are correlated with 
a worse outcome. A confounding factor may emerge when dealing with maintenance 

Diabetes mellitus, Pneumonia and Cough as presenting symptom.

LDH at hospital admission (times 10-2), Pneumonia and Cough as presenting 
symptom. 

(a)

(b)

Fig. 3  Indexing effect across input variables. The red circles represent the value of the triples described by 
the data. The blue circles correspond to the index values generated after implementing DEA
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immunosuppression. Ageing of the immune system is a well-known process characterized 
by a defective immune system and increased systemic inflammation (Sato and Yanagita 
2019). In patients with chronic kidney disease, these phenomena are accelerated, appear-
ing at younger ages and long-lasting in time (Sato and Yanagita 2019). The association of 
inflammageing (as it is termed) with chronic immunosuppression is a probable explanation 
for the dissipation of the age effect in our predictive model. Induction immunosuppression, 
particularly T-cell depleting agents such as thymoglobulin, may increase the risk of disease 
severity. In an analysis of peripheral lymphocyte populations, Akalin et al. (2020) identi-
fied kidney transplant recipients admitted due to COVID19 to have lower CD3, CD4, and 
CD8 counts than those reported in the general population (Gautret 2020).

Most SOT recipients receive prednisone as their maintenance immunosuppression ther-
apy. Steroids have been described to reduce pathogen clearance and increase the viral shed-
ding of SARS-CoV2 if administered early in the course of the disease (Cao 2020). Hence, 
most organizations advise against its routine administration in patients with COVID-19 
(except if indicated for another reason, such as asthma or acute respiratory distress syn-
drome) (Luo 2020; Cortegiani et  al. 2020; Fontana et  al. 2020). Interestingly, steroids, 
either as monotherapy or in combination with CNI’s, were maintained in most reported 
series (Akalin et al. 2020; Alberici et al. 2020a; Pereira et al. 2020) and management proto-
cols (Alberici et al. 2020b).

Following the policy of our center, we use tocilizumab and steroids as rescue therapy 
in patients with poor clinical outcomes despite an initial treatment with lopinavir/ritonavir, 
hydroxychloroquine, and azithromycin. However, up to now, no treatment has proven to be 
able to modify the natural history of SARS-CoV-2 infection in a randomized control trial, 
the evidence supporting the potential benefit of these drugs being preliminary and, some-
times, controversial—even more in SOT recipients (Gautret 2020; Cao 2020; Luo 2020; 
Cortegiani et al. 2020; Fontana et al. 2020). There are several reports of tocilizumab being 
used among SOT recipients with COVID19 (Akalin et al. 2020; Alberici et al. 2020a; Fon-
tana et al. 2020), but its benefits are hard to extrapolate, in part due to its use as a second-
line treatment, hence only in patients with moderate-severe disease. On the other hand, the 

Fig. 4  Patient performance across input variables for the different index categories generated using DEA. 
The index has been normalized within the interval [0, 1]. Higher values represent relatively worse perfor-
mances
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use of tocilizumab translates into a good predictor of disease progression and severity. In 
this study, we were able to identify non-traditional risk factors for disease severity using 
tocilizumab in a composite model of worse outcomes.

In previous studies, cough has been found with relatively greater frequency in patients 
with poor outcomes, although, to this date, said symptom has not been included in pre-
dictive models to identify those patients with worse prognosis and a high likelihood of 
being admitted to the ICU (Wynants 2020a; Alberici et al. 2020a; Guan 2020; Zhou 2020). 
Herein, we have illustrated that the presence of cough at COVID-19 diagnosis constitutes 
a factor significantly related to the composite outcome of clinical progression and need for 
intensive care. Analytically, the usefulness of LDH and C-reactive protein (CRP) as mark-
ers of more severe forms of COVID-19 has been previously described (Giordano 2020; 
Zhou 2020). Therefore, some predictive models have used these parameters to identify 
forms of COVID-19 with a poor prognosis (Wynants 2020a). Similarly, in this study, LDH 
values at hospital admission have been directly associated with the composite outcome of 
poor prognosis and a higher probability of ICU admittance.

4.1  Enhancing the accuracy of machine learning techniques

The purpose of implementing a combination of DEA with an ANN is threefold. First, the 
optimization process on which DEA is built allows us to identify the performance of each 
patient regarding every analysis-related variable considered. Second, the corresponding 
slack values are used to design an index indicating the relative performance of each patient 
when considering several outputs simultaneously. Standard artificial intelligence models 
are generally constrained by one output variable distributed across different categories, 
though slightly more complex combinatorial environments may be defined. Finally, the 
index obtained can be used to orientate the ANN, which would otherwise omit the effi-
ciency interactions existing across variables, leading to a relatively poorer performance.

The performance index has been generated by normalizing the slack values retrieved 
from DEA relative to the initial ones, being these either quantitative discrete or categorical, 
and adding up the results across all the input variables. Quantitative discrete variables have 
been normalized dividing the slack value obtained from DEA by the original value of the 
variable. The normalization of categorical variables requires dividing the sum of the initial 
value and the slack obtained from DEA by the sum of the initial value and the maximum 
value of the category. The final slack-based efficiency sum per patient has been normalized 
relative to the highest value obtained, implying that higher values of the index correspond 
to relatively worse performances.

One of the most remarkable features of the hybrid DEA-ANN model is its significant 
prediction accuracy in environments characterized by relatively low numbers of observa-
tions. In addition, it provides a reliable framework of analysis for data structures where 
multiple input and output variables must be evaluated simultaneously.

When considering machine learning techniques, logistic regression (Bagley et al. 2001) 
and random forest (Cafri et al. 2018) are among the most commonly used ones in the med-
ical literature. Despite their general applicability, their accuracy tends to decrease when 
dealing with small data samples, as is the case in the current analysis. We have illustrated 
how the suggested model (96.3% accuracy) improves substantially upon the best perfor-
mance of both techniques under any alternative configuration (65.5% for logistic regres-
sion and 44.8% for random forest). In addition, the accuracy of both techniques has also 
been improved when the index generated through DEA is used to define the corresponding 
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output categories (logistic regression achieves an accuracy of 85.2% with the second DEA 
configuration defined in Table S6, while random forest reaches 55.6%).

4.2  Comparing ANN and DEA‑ANN

We start by noting that a common shortcoming of the machine and deep learning tech-
niques implemented throughout the paper is given by their limited capacity to incorpo-
rate multiple output categories into the analysis, with the logistic regression representing a 
limit case. This constitutes a considerable constraint whenever physicians need to consider 
multiple output variables and their potential interactions. The capacity of these models to 
identify patterns when directly implementing the categories defined by the different output 
combinations is also quite limited. We present below the confusion matrices obtained when 
applying the ANN and the DEA-ANN ranking categorization to the different output cat-
egories described in the study. A basic interpretation of the confusion matrices described 
through this section is provided in Table 4.

As can be observed in Figs. 5 and 6a, b, the direct implementation of the ANN to the 
different categorization scenarios described, which encompass all the potential combi-
nations of the composite primary outcomes defined by the physicians, does not produce 
significant results. Note, in particular, the difficulties faced by the ANN to identify those 
patients located in the worst categories, namely, those displaying relatively poorer output 
values. The enhanced identification and classification capacities of the DEA-ANN hybrid 
model are illustrated in Fig. 6c. A similar intuition based on the same type of results fol-
lows from the alternative evaluation scenario described in the “Appendix” section, where 
death and days spent in intensive care are taken as outputs.

5  Conclusions

Prediction models are needed to counteract the controversies in data and lack of informa-
tion in specific populations under the current SARS-CoV-19 pandemic. The prediction of a 
worse clinical course in high-risk populations facing a sanitary emergency becomes a fea-
sible option with the hybrid DEA-ANN model introduced through the paper. As shown in 
the study with kidney transplant recipients, cough, pneumonia, and LDH at admission con-
stitute key risk factors for a more severe course, a profile validated and extended through 
the slacks obtained via DEA. The prediction accuracy of the DEA-ANN model peaks at 

Table 4  Description of the entries composing a confusion matrix

Target class

1 2

Output class
1 True positive False positive Precision

False discovery rate
2 False negative True negative Negative predictive value

False omission rate
Sensitivity
False negative rate

Specificity
False positive rate

Percent of correctly classified cases
Percent of misclassified cases
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96.3%, while the implementation of the ANN to configurations directly based on the value 
of the output variables achieves a maximum of 69%. A consistent improvement in the pre-
diction accuracy of different machine learning techniques has also been observed when the 
output categorization process is determined by DEA.

The capacity of DEA to synthesize the behavior of complex processes through its 
slack variables enhances the ability of the ANN to identify the main relationships existing 
among the characteristics defining the alternatives. In this regard, one of the main contribu-
tions of our hybrid model is the improvement in the predictive power of different machine 
learning techniques when dealing with few data, a particularly important problem in devel-
oping countries, whose hospitals are generally constrained to work with small datasets. 
Being able to extrapolate the potential evolution of patients should improve the efficiency 
of patient management and resource allocation processes across hospitals, a particularly 
important feature in emergency situations.

Fig. 5  Quartile setting. CNF3 configuration



4668 I. Revuelta et al.

1 3

As can be inferred from the empirical results presented, a drawback of the proposed 
hybrid model stems from the actual definition of the quartiles, particularly in settings 
where few observations may result in an empty quartile. Clearly, the model is still able to 
perform properly and enhance the identification capacity of the ANN, but physicians may 
have to consider adjusting the distribution of patients across quartiles or terciles, decreas-
ing their confidence in the validity of the results obtained. On the other hand, the model 
provides a complete profile of the patients composing each quartile category, allowing for 
a direct evaluation of their relative performances and the potential behavior of the corre-
sponding output variables.

Future research should aim at incorporating dynamic DEA structures in the generation of 
the index so as to account for complex interactions across input and output categories within a 

First ANN configuration: CNF1(a)

Fig. 6  Tercile setting.
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simple framework. Moreover, incorporating the subjective beliefs of physicians into the design 
of the model would modify its performance but allow for direct interactions with the users, 
improving its applicability as a decision support system. In this regard, different weights could 
be assigned to the input and output variables, integrating techniques such as the best–worst 
ranking method within the current hybrid DEA-ANN framework.

Second ANN configuration: CNF2 (b)

Fig. 6  (continued)
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Appendix: Methodology

Patients and study design

We conducted a retrospective observational study including all kidney transplant recipi-
ents admitted due to a SARS-CoV-2 infection between March 3, 2020 and April 24, 
2020 at our center. The study was conducted following the approval by the local Institu-
tional Ethical Committee.

DEA-ANN configuration (c)

Fig. 6  (continued)
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Diagnosis of covid‑19

Infection by SARS-CoV2 was diagnosed by a positive result in RT-PCR tests from a naso-
pharyngeal swab. However, due to laboratory constrains and the limited diagnostic sensi-
tivity of this technique (Worl Health Organization 2019), since April 2020 the diagnosis of 
COVID-19 was established by clinical criteria, according to presenting symptoms (pres-
ence of respiratory and/or gastrointestinal symptoms with fever), analytical (especially 
C-reactive protein [CRP], ferritin and lactate dehydrogenase [LDH] increase, lymphope-
nia), and radiological findings (unilateral or bilateral interstitial pneumonia). In doubtful 
cases, diagnosis was confirmed by nasopharyngeal swab RT-PCR and/or CT-scan findings.

Nasopharyngeal and oropharyngeal swabs were collected following the Centers for 
Disease Control and Prevention guidelines, namely, in 3  mL viral transport media and 
RNA extraction followed by real-time RT-PCR. All sample aliquoting and mixing was 
performed with an automated Hamilton STARlet 8-channel liquid handler and the assay 
plates were scanned using a COBAS 6800 RT-PCR system (Roche Diagnostics GmbH, 
Mannheim, Germany).

Patient management

According to center policy, the presence of one or more of the following were consid-
ered criteria for hospital admission in patients with a COVID-19 diagnosis: respiratory 
rate ≥ 20 bpm, baseline  SO2 < 95%, unilateral or bilateral pneumonia on chest radiography, 
and/or significant comorbidities (active hematologic disease, neutropenia in patients with 
active neoplastic disease, poorly controlled HIV infection, a solid organ transplant in the 
previous 12 months, or recent treatment for acute graft rejection). The criteria for admis-
sion to an intensive care unit (ICU) included respiratory deterioration with the need for 
high doses of oxygen (FiO2 ≥ 60%) and/or PaO2/FiO2 < 300.

During hospital admission, analytical monitoring was performed every two days (daily 
in severe patients) with serum creatinine (SCr), CRP, procalcitonin, ferritin, LDH, ultra-
sensitive troponin I (US-TnI), blood count (including lymphocyte count), and serum iono-
gram (sodium, potassium, calcium, and magnesium). Radiologically, at least two chest 
radiographs were performed weekly, or every 48 h in severe patients or those with a clini-
cal worsening. Due to the potential QT prolongation and arrhythmic events associated with 
treatments with lopinavir/ritonavir, hydroxychloroquine, and azithromycin, patients under-
went an electrocardiogram every 48 h during treatment in order to identify potential con-
duction disturbances associated with these drugs.

COVID‑19 treatment protocol

According to center policy, admitted patients were treated (except contraindications) with 
a triple combination therapy of lopinavir/ritonavir (200/50 mg/12 h), hydroxychloroquine 
(400 mg/12 h on the first day, then 200 mg/12 h for 4 more days, except for patients with 
an estimated glomerular filtration rate [eGFR] < 10 mL/min/1.72m2, in which case the dose 
was 200 mg/day), and azithromycin (500 mg/24 h the first day and then 250 mg/24 h for 
4 days). Those patients who despite this treatment presented a clinical worsening with evi-
dence of increase of acute phase reactants (CRP and ferritin) were treated with tocilizumab 
in a single dose (400 mg if < 75 kg, and 600 mg otherwise). If 24 h after the administration 
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of tocilizumab there was no improvement (or whenever tocilizumab was not available), 3 
pulses of methylprednisolone 250  mg/day were administered. Finally, in the absence of 
clinical improvement, anakinra (200 mg/12 h the first day, and 200 mg/24 h for two more 
days), interferon, or baracitinib were used. Demonstrated and active bacterial infection was 
considered a contraindication for the use of tocilizumab (and other immunosuppressants 
administration).

In addition to antiviral treatment, all patients received prophylactic heparin due to the 
high risk of COVID-19 associated thrombosis (40 mg/d of enoxaparin), which was main-
tained until hospital discharge. Those with elevated d-dimer (> 3000  ng/mL) received 
enoxaparin at a dose of 1  mg/Kg/24  h, and those with confirmed pulmonary thrombo-
embolism received enoxaparin at anticoagulant doses (1 mg/kg/12 h, or 1 mg/kg/24 h if 
eGFR < 30 mL/min/1.72m2) planned to continue for 3 months.

Management of immunosuppressive treatment

Due to the potential severity of SARS-CoV-2 infection, mycophenolate and mTOR inhibi-
tor were temporarily withdrawn in all admitted transplant recipients with COVID-19. 
Furthermore, in severe patients or those starting treatment with lopinavir/ritonavir, the 
calcineurin inhibitor (CNI) was also temporarily discontinued due to the potential and sig-
nificant drug interaction with lopinavir/ritonavir. In these cases, maintenance immunosup-
pression consisted of prednisone in monotherapy (20 mg/day) until COVID-19 resolution, 
at which time CNI was reinitiated at reduced doses.

Study assessments

The primary study outcome consists of the set of potential combinations defined through 
the events representing a worse course of the patients (namely, ICU needs, Tocilizumab, or 
pulse of steroids use). We chose a composite primary outcome consisting of a broad defini-
tion of worse events for the therapeutic approach until a worse course of the disease was 
detected.

Statistical analysis

Parametric and non-parametric tests were conducted conditioned by the variables being 
analyzed. Univariate and multivariate binary logistic regression analyses have been per-
formed for the primary composite outcomes and ICU admission. All statistical tests have 
been conducted within a 95% confidence interval and a P value < 0.05 is considered sig-
nificant. SPSS v.25 software (SPSS inc, Chicago, IL, US) has been used to perform the 
statistical analyses.

DEA–ANN: definition, alternative configurations, and evaluation techniques

The main objective of the hybrid model is to extrapolate the potential course of patients 
based on the analyses performed at admission. Thus, we studied the effects that a set of 
17 input variables has on a group of 3 potential outputs. The input variables used to gen-
erate the profiles of the patients and the outputs defining the corresponding treatments 
are described in Table  S4. Note that the output variables correspond to those identi-
fied by the physicians as defining the worse composite outcome. Similarly, the input 
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variables include all those identified as significant in previous studies, as described 
through the main body of the paper, together with those that the physicians considered 
to be important risk factors among SOT patients.

The main model consists of two specific but interrelated phases. An optimization 
technique named output-oriented Data Environmental Analysis (DEA) is used to ana-
lyze multiple input and output variables simultaneously and identify the magnitude of 
those where each patient underperforms relative to the benchmark set (Zhu 2014). The 
resulting values are used to design a performance index defining the output categories 
on which the Artificial Neural Network (ANN) will be trained. A primer on DEA is 
provided below. In the second phase, we implement a two-layer feed-forward network 
with sigmoid hidden and softmax output neurons to cluster patients across the DEA-
generated categories. The network is trained using scaled conjugate gradient backpropa-
gation (Bishop 2006).

A primer on data envelopment analysis

DEA is generally applied to medical environments when analyzing the performance of 
facilities and hospitals. Its implementation to evaluate the evolution of patients has been 
highly limited. Only two papers in the operational research literature follow a path simi-
lar to ours. The first one (Misiunas et al. 2016) applies DEA to identify the most effi-
cient patients when dealing with large amounts of data that must be analyzed through 
an ANN. The second one (Ahmadvand and Pishvaee 2018) focuses on the performance 
of a fuzzy framework that incorporates data regarding the behavior of both patients and 
different logistic factors.

The set of variables defining a standard output-oriented DEA structure is described 
below. The intuition behind the selection of an output-oriented framework is related to 
the medical interpretation of the model. The output variables will be defined so that 
increments in their value constitute a main objective of the optimization model. That 
is, one of the main features of the analysis consists of adapting the medical variables so 
that the DEA framework aligns with the main objectives of the physicians and provides 
results that can be easily interpreted.

More precisely, DEA models can be divided in two main categories in terms of orienta-
tion, namely, input and output oriented. A DEA model is input-oriented when the inputs 
are minimized while keeping the outputs at their current levels. Similarly, an output-ori-
ented DEA model maximizes outputs while keeping inputs at their original levels. The aim 
of our approach is to extrapolate the potential evolution of patients—as described by the 
behavior of the output variables within the sample group being analyzed—given their ini-
tial analyses. This evolution is determined by the relative value of the input variables while 
considering the behavior of patients through their different output profiles. Thus, since 
the inputs cannot be modified to improve the profiles of the patients, as an input-oriented 
approach would require, we focus on the best potential performance of patients and the 
subsequent constraints imposed by their inputs to perform accordingly.

We consider a set of n patients subject to m different analyses at the hospital admission 
stage (input variables), xij , i = 1, ...,m , j = 1, ..., n , that lead to s potential outcomes (output 
variables), yrj , r = 1, ..., s , j = 1, ..., n . That is, the rows of the resulting n × (m + s) matrix 
represent the patients whose inputs and outputs are described in the corresponding col-
umns. The DEA model defining the performance score of PatientO is given by:
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This model delivers an efficiency score of 1
�o

 for PatientO , with �o ≥ 1 . A value of 𝜃o > 1 
implies that PatientO underperforms. Given the optimal values of �∗

o
 just derived, the refer-

ence set associated with PatientO is obtained by solving the following model:

The convexity constraint defining the variable returns to scale, 
∑n

j=1
�j = 1 , guarantees 

that the reference points determining the relative performance of the different patients are 
composed by weighted averages of well-performing patients. That is, the model gener-
ates a benchmark frontier that does not necessarily rely on a particular patient but defines 
weighted reference values out of several well-performing patients.

Definition Let �∗
o
 , s−∗

i
 and s+∗

r
 be the optimal solutions associated with the previous 

models.
PatientO performs well if an optimal solution 

(

�
∗
o
, �∗

j
, s−∗

i
, s+∗

r

)

 satisfies �∗
o
= 1 , s−∗

i
= 0 , 

s+∗
r

= 0. Otherwise, PatientO underperforms.

The non-parametric quality of DEA allows us to identify the variables where each 
patient underperforms as well as their corresponding magnitudes relative to the reference 
benchmark defined by the best performing patients across all variables. In other words, 

(1)

max �o
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n
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∑
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∑
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∑
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∑
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= �
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∑
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we do not only focus on the general performance of patients derived from the DEA model 
described in Eq. (1). We concentrate on the capacity of DEA to identify inefficiencies on a 
per patient and variable basis. That is, patients may display relatively good performances 
but exhibit inefficiencies on a subset of inputs. In this regard, the concise implementation 
of DEA described in Eq. (2) is used to identify the relative performance of each patient on 
a per variable basis.

The slack variables necessary to generate the relative performance index are inherent to 
any DEA model, independently of its structural complexity (Santos Arteaga et al. 2020). 
We are focusing on the generation of an index from a structure where the relative perfor-
mance of patients in terms of inputs can be used to reflect (and extrapolate) their behavior 
absent efficiency considerations. In this regard, the basic output oriented version is one of 
the simplest and more intuitive DEA configurations, though slacks and the subsequent per-
formance indexes can be obtained from any of the extended versions of DEA introduced in 
the literature (Santos Arteaga et al. 2019).

The papers described at the beginning of this section do not consider the categoriza-
tion quality of DEA, a particularly useful feature when dealing with small datasets, as the 
battery of tests performed in the current paper illustrates. It should be highlighted that in 
our analysis, all patients but one behave efficiently, that is, display a �∗

o
 value equal to one. 

Clearly, this information is irrelevant to the physicians, whose ANN models remain unable 
to identify the main characteristics of the patients displaying the worst potential behavior.

Generating the performance index

The output-oriented DEA model delivers a matrix describing both the efficiency of patients 
as well as the value of the slacks for each input and output variable. Both the efficiencies 
and the slacks allow to categorize patients in clusters determined by their relative perfor-
mances. We do not focus on the value of �∗

o
 displayed by the patients but generate a relative 

performance index based on the value of the input slack variables.
In this respect, our approach diverges considerably from that of a standard operational 

research environment. The main objective of a DEA model is to identify the most efficient 
patients in the sample, though in the current context this information is not particularly 
useful to physicians. The behavior of patients can however be evaluated through the value 
of the slack variables, a feature that will be used to profile the relative performance of the 
patients.

DEA considers a matrix consisting of 17 input and 3 output variables per patient to 
compute the corresponding efficiency scores while also generating a profile for each 
patient consisting of 20 slack values. We have normalized the slack values obtained from 
DEA to define a relative performance profile of the patients in terms of the initial values 
displayed by the variables. In this case, higher values are associated with relatively worse 
evaluations.

We abuse notation and use s−
ij
 , j = 1, 2, … , n, i = 1, 2, … , m , in the normaliza-

tion equations below to refer to the slack variables obtained from the model described in 
Eq. (2),

which define the distance between the variables composing the profile of each patient 
and a convex combination of benchmark reference values.

(3)s−
i
= xio −

n
∑

j=1

�jxij , i = 1, 2, … , m,



4676 I. Revuelta et al.

1 3

The slacks of quantitative variables have been normalized with respect to the initial val-
ues displayed by the patient following a standard approach

Note that the farther the distance from the optimal input level displayed by a given 
patient j in terms of variable i , the higher the relative value of the normalized slack and 
the poorer the performance of the patient. The idea is indeed quite simple, patients must 
improve with respect to their initial analysis values, allowing for a common general com-
parison framework.

Categorical values follow a similar intuition in terms of normalization relative to the 
initial value of the category to which the patient belongs. The normalization of the cat-
egorical variables requires two reference values, namely, the highest value of the category, 
maxj

{

xij
}

 , and the original value of the variable exhibited by patients

Clearly, the highest value of an input category differs across variables according to the 
potential categories defined per variable. For instance, the maximum values of the catego-
ries defined for the following variables are: diabetes mellitus = 1, hypertension = 1, ACEI/
ARB = 1, cough as presenting symptom = 1, acute kidney injury = 1, and pneumonia = 2.

The index generated using the normalized slack values is defined as follows. We start by 
adding up the value of all the normalized slacks for each patient

Define the highest value of the sum of the normalized slacks as follows

The value of the relative slack-based performance index assigned to each patient is 
therefore given by

Patients are then classified in quartile or tercile categories depending on their relative 
performances as determined by pj . We should note that the relatively low number of obser-
vations and the fact that most patients performed considerably well has led to a very small 
number of patients being categorized within the worst quartiles or terciles.

Figure 3a, b illustrate the capacity of the normalized slacks values to categorize patients 
according to their relative performance. We have used red circles to represent the initial 
value of the variables displayed by the patients. Similarly, blue circles describe the value 
of the normalized slack variables derived from DEA. The planes dividing the space are 
conditioned by the initial domains defining the value of the variables. The capacity of the 
normalized slacks to identify clusters of patients based on their relative performance on a 
per variable and patient basis can be observed in both figures.

(4)x̃ij =
s−
ij

xij
, j = 1, 2, … , n; i = 1, 2, … , m.

(5)x̂ij =
s−
ij
+ xij

xij +maxj
{

xij
} , j = 1, 2, … , n; i = 1, 2, … , m.

(6)xs
j
=

m
∑

i=1

x̃ij +

m
∑

i=1

x̂ij, j = 1, 2, … , n.

(7)xm = max
{

xs
j
, j = 1, 2, … , n

}

.

(8)pj =
xs
j

xm
, j = 1, 2, … , n.
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Categorization process

The categorization of each alternative configuration is summarized in Table S5. The 
slack-based index generated using DEA distributes patients across three categories. 
A few of them display a normalized index value within [1, 0.75], indicating a sub-
optimal performance categorized as the worst quartile. Most of the patients perform 
above average, that is, the normalized values of their indexes are contained within the 
interval [0.5, 0], which has been divided in the corresponding third and best quar-
tiles. Given the low number of observations and the relatively good outcomes observed 
among patients, the index does not deliver any value within the interval [0.75, 0.5].

We must emphasize that these numerical results are conditioned by the small size of 
the sample with which we are initially endowed. The implementation of DEA encom-
passes a total of 29 patients, namely, those displaying observations for all the input and 
output variables considered. Despite the severity of the pandemic, the initial number of 
kidney transplant recipients affected by the virus was small. The capacity of DEA to 
generate a performance profile of patients with a small number of observations consti-
tutes one of its main qualities and advantages over standard statistical methods. How-
ever, the number of categories generated depends on the number of patients that can 
be assigned to each one of them. With relatively few observations, we must consider 
adapting the categories to the results obtained, a drawback that can be accounted for 
with relatively larger amounts of patients.

In order to prevent selection biases, the output categories used to train the ANN 
have been defined to contain all the potential distributions of patients. In particular, 
we consider three different configurations of the output variables to improve upon 
the results of the DEA hybrid. The three alternative configurations have been defined 
based on the actual evolution of the patients. The first configuration, CNF1, distrib-
utes patients in three different categories as follows: if patients require all three out-
put treatments, they are included within the worst category. Patients requiring one and 
two output treatments comprise the second category, while those not requiring any 
treatment constitute the best performing category. The distribution of patients across 
categories inherent to this configuration is the closest one to that of the DEA hybrid 
model. The second configuration, CNF2, considers patients requiring three and two 
output treatments as those composing the worst category. Patients requiring one treat-
ment were included within the second category, while those not requiring any treat-
ment comprised the best performing category. The third and final configuration, CNF3, 
defines a total of four categories, one for each number of treatments being required.

We must finally note that several modifications have been applied when defining the 
logistic regression, requiring a unique binary category to represent the dependent vari-
ables. Two configurations of the hybrid model have been defined. The first DEA con-
figuration assigns a value of one to the worst quartile and a value of zero to the remain-
ing ones. The second DEA configuration assigns a value of one to the worst and third 
quartiles and a value of zero to the best quartile (though not reported in Table 3, the 
accuracy achieved by the second DEA configuration equals 85.2%). The same intuition 
applies to the logistic categorization of the alternative configurations. The correspond-
ing assignment of binary variables to the hybrid model and each alternative configura-
tion is described in Table S6.
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Comparative technical analysis

Selection biases have been prevented by considering all the potential distributions of 
patients across the output categories used to train the ANN. In addition, the accuracy 
of these alternative configurations relative to that of the hybrid model has been tested 
through a battery of 24 machine learning techniques, including logistic regression and 
random forest. Detailed descriptions of all these techniques, together with their advan-
tages and drawbacks, can be found in any textbook on machine learning (Bishop 2006). 
We briefly summarize each one of them in the next section. All the numerical simula-
tions have been performed using MATLAB software.

Supervised machine learning techniques implemented

We provide a brief description of the supervised machine learning techniques applied to 
illustrate the identification enhancing quality of the DEA-generated index relative to a 
direct implementation of the techniques.

Intuitively speaking, when facing a classification problem, we are endowed with a 
set of predictors, namely, features or independent variables, and a given outcome, that 
is, a class or dependent variable. Each observation consists of a set of predictor values 
and the corresponding class. The techniques described learn from the set of predictor 
values and their corresponding classes so that whenever a given set of feature values is 
received, the technique can predict the class to which the object belongs.

Artificial neural network An artificial neural network is composed by an input layer, 
one or more hidden layers, and an output layer. Each layer consists of several nodes, i.e., 
neurons, interconnecting the layers. The network is based on a sequential process where 
layer inputs are given by the output of the previous layer. The strength of the signals 
issued by the neurons is determined by the adjustment of their weights taking place 
through the learning process. ANNs aim at recognizing patterns so as to classify inputs 
into different classes according to key characteristics via either supervised or unsuper-
vised learning.

Logistic regression Logistic regression is one of the classification algorithms most com-
monly used when the objects analyzed must be categorized in two main classes. The clas-
sifier determines the probability of belonging to each class combining linearly a given set 
of predictors.

Decision trees Decision trees allow to classify objects into a finite number of classes deter-
mined by a categorical target attribute. A hierarchical tree structure consists of a set of 
nodes based on attributes that split into branches determined by the potential values of the 
attributes, leading to the final leaf nodes encompassing the membership classes of the target 
attribute. Trees may target a single attribute or a composed one based on a linear combina-
tion of variables.

The main types of decision trees are determined by the number of leaves defined to 
distinguish among classes, ranging from fine (allowing for a maximum of 100 node splits), 
and medium (endowed with a maximum of 20 node splits) to coarse (where the maximum 
number of node splits equals 4).
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Random forest A random forest consists of multiple individual decision trees operating as 
an ensemble. Trees deliver class predictions and select the class with the highest number of 
votes. Correlation across trees is prevented through bagging (bootstrap aggregation)—such 
that each tree samples randomly with replacement from the dataset –, and feature random-
ness—such that trees choose from a random subset of features when selecting node branches 
–.

Linear discriminant Linear discriminant is a classification technique that defines the 
main differences between a set of classes using linear boundaries. Classes are assumed to 
generate data through different Gaussian distributions, with fitting functions estimating 
the corresponding parameters for each class. The characteristics of the objects are used 
to determine the class where they are allocated, with each object receiving scores from 
the different predictors and a group one.

Kernel Naïve bayes The naïve Bayes classifier consists of two main steps. The first one 
is training: the classifier estimates the parameters of a probability distribution assuming 
the conditional independence of predictors given the class. More precisely, the classi-
fier assumes that the effects that predictors have on each class are independent of the 
values of the other predictors. The second step is prediction: the classifier computes the 
posterior probability of a new data sample belonging to each class, with the data being 
classified according to the highest probability.

Support vector machine Support vector machine defines a hyperplane to separate 
objects across classes. This technique aims to find the hyperplane with the widest margin 
between classes. The support vectors are given by the points located closest to the hyper-
plane. The categorization process depends on the type of classifier used to separate the 
classes, which ranges from linear, quadratic, and cubic functions to Gaussian kernels of 
different scales—fine, medium, and coarse –.

K‑nearest neighbors The k-nearest neighbors classifier categorizes objects according to 
their distance to other neighboring objects within the dataset. Depending on the degree 
of distinction between classes, namely, the number of neighboring points considered, we 
have different versions of the classifier ranging from fine (one neighbor) and medium (10 
neighbors) to coarse (100 neighbors). In addition, MATLAB allows to implement cosine 
and cubic metrics, as well as distance weights, while considering 10 neighbors.

Ensemble Ensemble classifiers define hybrid techniques incorporating the output from 
different weak learners into a higher quality model. We implement the following classi-
fiers in our analysis.

• Boosted Trees combining Adaptive Boost with Decision Tree learners;
• Bagged Trees combining a Random Forest Bag with Decision Tree learners;
• Subspace Discriminant combining Subspace classifiers with Discriminant learners;
• Subspace KNN combining Subspace classifiers with Nearest Neighbor learners;
• RUSBoosted Trees combining Random Under-Sampling Boost with Decision Tree 

learners.
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Death and days spent in intensive care as outputs

We conclude by performing an additional set of simulations comparing the outcomes 
obtained from the direct implementation of the ANN with those derived from the slack-
based DEA-ANN. In this case, the output variables considered are death and number of 
days spent in intensive care. These variables were not part of the composite primary out-
come analyzed by the physicians but are particularly important during the early stages of a 
medical emergency. We have analyzed these variables separately since their incorporation 
into the analysis would require a much more complex combinatorial scenario to define the 
potential output configurations of the ANN. On the other hand, we should emphasize that 
these variables can be easily incorporated into the slack-based index defined through DEA.

Given the heterogenous values displayed by the number of days in an ICU, we have 
categorized the variable by considering whether patients spent more or less than two 
weeks in intensive care. That is, we are endowed with a binary output variable represent-
ing death and an additional categorical variable describing whether patients spent more or 
less than two weeks, or no time at all, in an ICU. The division of these outputs across the 
classes defined to train the ANN and implement the slack-based DEA index is presented in 
Table S7. We have considered all possible categorization strategies designed to compare 
the identification capacities of the ANN and the hybrid DEA-ANN technique.

The corresponding set of confusion matrices obtained within each setting is presented 
in Figures S1 to S3. Note how, in all settings, the ANN exhibits substantial problems iden-
tifying the patients who end up needing intensive care or dying. Indeed, the identification 
capacity of the ANN relies on those patients who do not die or require any time in an 
ICU. The enhanced DEA-ANN model overcomes this identification problem when defin-
ing the relative performance of each patient. As can be observed, its identification capacity 
improves substantially upon that of the ANN. Intuitively, DEA considers the performance 
of each patient relative to the whole population being analyzed, which implies that patients 
whose analyses display poor results and end up in an ICU are not necessarily defined as 
inefficient. On the other hand, patients displaying regular values in their analyses but end-
ing in an ICU are the ones who may be considered inefficient.

We conclude by illustrating the slack-based performance profiles of patients categorized 
by terciles in Figure S4. It can be immediately observed that the profiles generated by the 
slacks are quite similar to those obtained when considering the composite primary outcome 
variables as the outputs of the DEA-ANN model. Thus, besides (generally) improving the 
identification capacity of the corresponding machine learning techniques, DEA allows us 
to generate consistent profiles of the patients determined by their potential evolution.
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