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Abstract
The stabilization of human quiet stance is achieved by a combination of the intrinsic elastic properties of ankle muscles and
an active closed-loop activation of the ankle muscles, driven by the delayed feedback of the ongoing sway angle and the
corresponding angular velocity in a way of a delayed proportional (P) and derivative (D) feedback controller. It has been
shown that the active component of the stabilization process is likely to operate in an intermittent manner rather than as a
continuous controller: the switching policy is defined in the phase-plane, which is divided in dangerous and safe regions,
separated by appropriate switching boundaries. When the state enters a dangerous region, the delayed PD control is activated,
and it is switched off when it enters a safe region, leaving the system to evolve freely. In comparison with continuous feedback
control, the intermittent mechanism is more robust and capable to better reproduce postural sway patterns in healthy people.
However, the superior performance of the intermittent control paradigm as well as its biological plausibility, suggested by
experimental evidence of the intermittent activation of the ankle muscles, leaves open the quest of a feasible learning process,
by which the brain can identify the appropriate state-dependent switching policy and tune accordingly the P and D parameters.
In this work, it is shown how such a goal can be achieved with a reinforcement motor learning paradigm, building upon the
evidence that, in general, the basal ganglia are known to play a central role in reinforcement learning for action selection and,
in particular, were found to be specifically involved in postural stabilization.
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1 Introduction

Understanding mechanisms of how we maintain upright
stance offers profound insights into the information pro-
cessing in the brain for handling precarious nature of body
movements under the influence of destabilizing factors,
including gravity, sensory feedback delay and motor noise
(Rasman et al. 2024). Simple inverted pendulum models,
moving in the sagittal plane for describing postural sway
in the anterior-posterior direction, have been playing a piv-
otal role in the study of neural control during quiet stance
(Morasso et al. 2019). Such a model can be formulated as

I ϕ̈ = mghϕ − rkp (x̄ + rϕ − �0) − bϕ̇ (1)
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Fig. 1 An inverted pendulumas amodel of the upright stance. InEq. (1),
I is the inertia moment of the pendulum around its pin-jointed distal
end that corresponds to the ankle joint for a standing body, g the gravity
acceleration, m the mass of the pendulum, and h the distance from the
joint to the center of mass (CoM) of the pendulum. ϕ is the tilt angle
of the pendulum from the upright position, where ϕ > 0 represents
the forward tilt. In the right-hand-side of Eq. (1), the first term mghϕ

represents the linearized gravitational toppling torque of mgh sin ϕ for
a small range of motion ϕ during quiet stance, followed by the toppling-
force-resistant force, which is generated by a simple linear spring that is
placed horizontally. One end of the spring is attached to the pendulum
near the joint. The other end is located at x = x̄ , which is held by
fingers of a man who manually keeps balance of the pendulum. kp
and b represents the spring constant of the spring and b the viscous
coefficient of the torsional viscosity of the ankle joint, respectively. �0
and r are the natural length of the spring and the moment arm for the
spring-based actuation for the pendulum, respectively

where ϕ is the small tilt angle of the pendulum from the
upright position (Loram et al. 2005) (see Fig. 1 for details).
Despite the fanciful setting of Fig. 1 with a fingertip-based
manual control of the pendulum, there are clear corre-
spondences between this caricature and the human postural
control system: the spring and the horizontal position of the
fingertips represent, respectively, the Achilles tendon and the
degree of activation of active contractile element of the calf
muscles that are connected in series with each other. Using
this setting, we begin this article by highlighting a core issue
to be addressed in the study of postural control.

It has been long assumed that a hard-spring-like property
of the Achilles tendon is a key mechanism of how the quiet
stance at the upright position is stabilized (Fitzpatrick et al.
1992; Winter et al. 1998). Namely, it has been believed that
the spring of the Achilles tendon is so hard (the stiffness kp
is so large) that the upright posture of the pendulum can be
maintained simply by placing the fingertips at an appropriate
fixed horizontal position x̄ , where x̄ corresponds to the tonus
of the calf muscles as the anti-gravity plantar flexor muscles:
placing the fingertips more right and left, respectively, corre-
spond to the larger and smaller degrees of the muscle tonus

determined by the brain in a feedforwardmanner (Gatev et al.
1999). Since this model has only one muscle-tendon actuator
for plantar flexion, which is based on the fact that the tib-
ialis anterior muscle as a dorsiflexor is quite less frequently
activated during quiet stance (Masani et al. 2003), a stabi-
lization of the pendulumwould be achieved only at a slightly
forward-tilted equilibrium posture, where the gravitational
toppling torque and the plantar-flexion torque generated by
the restoring force of the spring are balanced. Note that
the plantar-flexion torque generated by the spring should
be equal to the active force generated by the calf muscles,
because they are connected with each other in series. The
major issue of the postural control research is stability of the
equilibrium and mechanisms of how it is achieved.

The forward-tilted equilibrium causes a tendency of the
body to forward fall, due to gravitational toppling torque
(Sakanaka et al. 2021). For this reason, stochastic postu-
ral sway in anterior–posterior direction during quiet stance
tends to exhibit a repetition of forward micro-fall and the
subsequent backward micro-recovery (Loram et al. 2005;
Nakamura et al. 2023). The traditional theory states that
the muscle tonus is kept unchanged basically in response
to each micro-fall (Horak and Macpherson 2011), i.e., the
position of the fingertips x̄ in Eq. (1) is fixed. For the fixed
x̄ , it is apparent by the geometrical consideration that the
total length of the tendon-muscle system (a distance between
the proximal end of the muscle and the fingertips in Fig. 1)
is necessarily elongated by a forward tilt of the pendulum
during each micro-fall. Because the tendon with the large
stiffness is hardly elongated, the amount of elongation of the
total length of the tendon-muscle system is mostly attributed
to the stretch of the calf muscles (Horak and Macpherson
2011). The traditional theory claims that a restoring force
generated by the stretch of the calf muscles (basically with
its tonus unchanged) pulls the pendulumbackward to achieve
themicro-recovery. If the stiffness of the calfmuscles is inad-
equate for the micro-recovery, the resistance to stretch of the
calf muscles may be augmented by stretch reflexes or by cen-
tral control (Loram et al. 2005), i.e., by shifting x̄ rightward.

Recent studies by Loram et al. (2005), however, revealed a
paradoxical phenomenon contradicting the traditional theory.
That is, the calf muscles are shortened and the Achilles ten-
don is elongated during eachmicro-fall, whichmeans that the
spring constant kp of Achilles tendon is much smaller than
that has long been believed. In other words, the restoring
force necessary for the micro-recovery cannot be generated
by the stretch of the calf muscles, neither by the stretch-
reflex-based augmentation of the resistance to stretch of the
calf muscles, because of the absence of the stretch of the calf
muscles, which has been considered as the primary cause
of the restoring force generation. After the discovery that
challenges the traditional theory, the community of postural
control research is awaiting a new theory of postural control

123



Biological Cybernetics (2024) 118:229–248 231

during quiet stance (Morasso and Schieppati 1999; Morasso
and Sanguineti 2002; Loram et al. 2011). One certain thing
is that a new theory requires an appropriate mechanism for
active modulation of x̄ without the help of the stretch reflex
of calf muscles. If not, the inverted position of the pendulum
cannot be stabilized by any fixed x̄ (Morasso and Sanguineti
2002).

We make the situation more specific using the model of
Eq. (1) andFig. 1.Note that, inEq. (1), �0 and x̄+rϕ represent
the natural and the actual lengths of the spring, respectively,
where x̄ is the horizontal position of the fingertips from the
origin located at the joint, and r is the moment arm for the
spring-based actuation for the pendulum (Fig. 1). As in the
traditional theory, we consider a simpler case with a fixed x̄ ,
i.e., a case with no stretch reflex nor any central modulation
of x̄ . Defining k � r2kp, ᾱ � x̄/r , ϕ0 � �0/r , and ϕEP �
ϕ0 − ᾱ, we rewrite Eq. (1) as

I ϕ̈ = mghϕ − k (ϕ − ϕEP) − bϕ̇, (2)

where k is the passive torsional spring constant of the joint
(passive joint stiffness). ϕEP can be regarded as the virtual
equilibrium point (VEP) that would be followed by an actual
trajectory of ϕ, as often discussed in literatures of voluntary
arm reaching movements (Hogan 1985; Gomi and Kawato
1997; Loram et al. 2005). ϕEP = 0 when x̄ = �0. ϕEP < 0
when the fingertips are located at the right side of x = �0,
i.e., x̄ > �0, which makes ϕ − ϕEP, the deviation of ϕ from
the VEP, and the resulting restoring force large. On the other
hand, ϕEP > 0 when the fingertips are located at the left
side of x = �0, i.e., x̄ < �0, which makes ϕ − ϕEP and the
resulting restoring force small. Note that x̄+rϕ > �0 should
always be satisfied by the ankle muscles, as the tendon is
always stretched compared to the natural length (Horak and
Macpherson 2011), and thus ϕ > ϕEP, which means that the
spring of the tendon in Fig. 1, and also in the actual Achilles
tendon in human, can work only as a tension spring, not
as a compression spring. In contrast to the restoring torque
−k(ϕ−ϕEP) that pulls the pendulum backward in proportion
to ϕ > 0, the term mghϕ, as a linearized version of the
gravitational toppling torque mgh sin ϕ for small ϕ, is an
anti-restoring torque, i.e., it pulls the pendulum forward in
proportion to ϕ. The critical constant mgh is often referred
to as the load stiffness (Chew et al. 2008).

Identification of the value of k in comparison with the
value of mgh is critical for the study of postural control
(Loram and Lakie 2002a; Casadio et al. 2005). Defining
k � c · mgh with c representing the ratio between the pas-
sive joint stiffness and the load stiffness as in Loram et al.
(2005), we have a difference between two competing torques
denoted by

τ � mghϕ − c · mgh(ϕ − ϕEP) = mgh {(1 − c)ϕ + cϕEP} .

(3)

τ = 0when two forces are balanced, yielding the equilibrium
posture at

ϕ̄ = c

c − 1
ϕEP. (4)

Note that ϕ̄ becomes closer to ϕEP of the VEP as c increases
over unity for large values of k. With ϕ = ϕ̄ + θ for a
small deviation θ from the equilibrium ϕ̄, Eqs. (2) and (3)
are rewritten as

τ = mgh(1 − c)θ (5)

and

I θ̈ = mgh(1 − c)θ − bθ̇ , (6)

respectively. If c > 1 as assumed in the traditional theory
with a hard spring of the Achilles tendon, a forward-tilted
equilibrium is achieved only with ϕEP > 0, by locating the
fingertips at the left side of x = �0. Apparently, the equilib-
rium posture ϕ̄ or θ = 0 is stable for c > 1 (Winter et al.
1998). On the other hand, if c < 1 with a compliant spring,
a forward-tilted equilibrium is achieved only with ϕEP < 0,
by locating the fingertips at the right side of x = �0, cor-
responding to the large muscle tonus x = x̄ , perhaps with
a large elongation of the compliant spring. The equilibrium
posture ϕ̄ or θ = 0 for c < 1 is unstable, no matter how
much the muscle tonus x̄ is set to a large value. That is,
contrary to intuitive expectations at first glance, the upright
posture with the compliant Achilles tendon can never be sta-
bilized by elevating the tonus of the calf muscles. Note that
the unstable equilibrium point in the state space of the sys-
tem is topologically saddle point with a stable eigenmode
along a stable manifold of the saddle and an unstable eigen-
mode along an unstable manifold of the saddle. It might also
be counter-intuitive that the restoring torque −k(ϕ − ϕEP)

can be balanced with the gravitational toppling torque even
with a small value of k, which can be achieved by making
a deviation of ϕ from the VEP large. That is, there exists an
equilibrium posture ϕ̄ in the system even with a small value
of k with c < 1, although the equilibrium posture cannot be
stable with a fixed value of the tonus x̄ . That is, static equili-
bration and dynamic stabilization of the equilibrium are not
the same thing.

Reliable quantifications of the k value during quiet stance
were performed relatively recently (Loram and Lakie 2002a;
Casadio et al. 2005), showing that k < mgh, i.e., c < 1. That
is, the passive joint stiffness is smaller than the load stiffness
(c ∼ 0.8), and thus insufficient for stabilizing the upright
posture by elevating the tonus of the calf muscles. It is also
noteworthy to mention that the passive joint viscosity b is
also small, about a few Nms/rad (Loram and Lakie 2002a;
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Casadio et al. 2005), corresponding to the underdamped sit-
uation. Based on the above discussion, only one remaining
option to avoid a fall of the pendulum is to alter the value
of ϕEP actively, i.e., to move the position of the fingertips x̄
actively, perhaps by using the sensory feedback information
(Masani et al. 2003) and/or a predicted state of the pendulum
(Gawthrop et al. 2011), or by using an appropriate periodic
control force (Insperger 2006; Insperger and Milton 2014).
With a dynamic alteration of x̄ by an additional amount of
x̃(t), the length of the spring becomes x̄ + x̃(t) + rϕ, and
Eq. (2) for c < 1 is rewritten as

I θ̈ = mgh(1 − c)θ − bθ̇ + kϕ̃EP(t), (7)

where ϕ̃EP(t) � −x̃(t)/r , for which we use the fact that the
motion of the fingertips does not affects the viscous force
around the joint. The last term kϕ̃EP(t) represents the active
modulation of the VEP, corresponding to the active control
torque generated by a sequence of phasic contractions of the
calf muscles, which is superposed on the tonic contraction
of the calf muscles ᾱ.

Defining τact(t) � kϕ̃EP(t), we aim to reveal a neural
controller for τact that is consistent with experimental char-
acterizations of postural sway, including the non-spring-like
paradoxical behavior of the calf muscles during micro-fall
and the subsequent micro-recovery. That is, the controller
would generate active torque to brake each micro-fall, cor-
responding to the contraction of the calf muscles during the
micro-fall, and make the calf muscles relaxed, i.e., switching
the active force generation off during the micro-recovery.
Note that, in this case, the micro-recovery in the absence
of the active torque τact might be achieved passively by the
inertia force of the pendulum that is thrown backward with
a negative velocity at the timing of when τact is switched
off (Loram and Lakie 2002b). The promising candidate for
such a controller, referred to as the intermittent control model
(Bottaro et al. 2008; Asai et al. 2009), may be formulated by

τact(t) =
{ −Pθ� − Dω�, if (θ�, ω�)T ∈ Son,
0, otherwise if (θ�, ω�)T ∈ Soff,

(8)

where θ� � θ(t−�) andω� � ω(t−�) � θ̇ (t−�), repre-
senting the delay-affected tilt angle and the angular velocity
with � being the feedback delay time due to neural signal
transmissions.

The parameters P and D are gains of the conventional pro-
portional and derivative controller, respectively, when τact(t)
is activated. Note that, for small values of θ and ω, it is quite
natural to consider the PD controller for the generation of the
active joint torque, by taking into account a Taylor expansion
of a general feedback torquewith any form of smooth nonlin-
ear function of θ� andω�. For the intermittent control model
with τact in Eq. (8), the θ–ω plane is divided into two regions,
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Fig. 2 Stability regions of the on-subsystem for the intermittent control
model on P–D parameter plane for several values of delay � = 0.1,
0.2, 0.3, 0.4 and 0.5 s. Stability region for � = 0.2 s is indicated by
the gray area. The on-subsystem is stable for the parameter points at
(P, D) = (0.25mgh, 100) with the closed circle and at (P, D) =
(0.8mgh, 270)with the open circle,while it is unstable for the parameter
points at (P, D) = (0.25mgh, 10) with the diamond. The parameter
point (P, D) = (0.8mgh, 270) is shown here as a reference that is close
to the one used for the traditional continuous control model

Son and Soff, inwhich the active torque is switched on and off,
respectively, in a delayed-state-dependent manner. Namely,
the PD controller is activated during the period of time when
the delayed state (θ�, ω�) is located in Son, while it is inac-
tivated during the period of time when (θ�, ω�) is in Soff.
The intermittent control model can be viewed as a stochastic
switching hybrid dynamical system, alternating between the
on-subsystem (the system with the PD controller switched
on persistently) described by

I θ̈ = mghθ − kθ − bθ̇ − Pθ� − Dω� + σξ(t) (9)

for (θ�, ω�) ∈ Son, referred to as the on-region, and the
off-subsystem described by

I θ̈ = mghθ − kθ − bθ̇ + σξ(t) (10)

for (θ�, ω�) ∈ Soff, referred to as the off-region. The last
terms introduced here in the right-hand-sides of Eqs. (9) and
(10) are the process noise (the endogenous torque noise) with
ξ(t) and σ being the standard Gaussian white noise and its
standard deviation, respectively. Traditionally, this sort of
noise was the only source of postural sway, where relatively
large noise intensities, tens of Newton meter per radian, have
been assumed for modeling postural sway (Peterka 2002;
Maurer andPeterka 2005).On the other hand, the intermittent
control model can exhibit realistic postural sway with very
small noise, or even with no noise, because of the existence
of off-subsystem (Bottaro et al. 2008; Asai et al. 2009).

Note that the on-subsystem of Eq. (9) is a described by a
delay differential equation (DDE). One of the critical fac-
tors that determines dynamics of the intermittent control
model with a given time-delay � is stability of the DDE
on-subsystem, which can be characterized by the stability
region in the P–D parameter plane (Fig. 2). The stability
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region of the deterministic on-subsystem with σ = 0 in the
P–D parameter space is D-shaped (Insperger et al. 2015;
Suzuki et al. 2020) with the vertical boundary of “D” located
at P = (1 − c)mgh for c < 1 (Fig. 2), which is equal
to 0.2mgh for c = 0.8. In this case, the on-subsystem is
unstable for the P–D values located in the outer region of
the D-shpaed stability region. Particularly, instability at the
curved line boundary of D-shaped stability region is due to
the delay-induced instability in the delay feedback control
system of Eq. (9). The larger the delay �, the smaller is the
D-shaped stability region (Fig. 2).

Different spatial configurations of Son and Soff on the θ–
ω plane lead to different sway dynamics and stability of the
intermittent control model. Representatives of such models
are the one with a threshold strategy (Collins and De Luca
1994; Eurich and Milton 1996; Nema et al. 2015) and the
one that exploits the stable manifold (the stable eigenmode)
of the unstable saddle point of Eq. (10) for the off-subsystem
(Bottaro et al. 2008; Asai et al. 2009). The threshold strat-
egy simply takes into account the sensory dead zone, i.e.,
the existence of a range of sensory input in which no cor-
rective actions are taken (Eurich and Milton 1996; Insperger
and Milton 2017). On the other hand, the intermittent con-
trol that exploits the stable eigenmode of the off-subsystem
might be predicated on a strategy for action selections in the
brain (Nakamura et al. 2021, 2023; Michimoto et al. 2016).
In this sequel, the name of the intermittent control model
is reserved for the model with the controller of Eq. (8) that
exploits the stable manifold of the off-subsystem, whereas
the model with the simple threshold is simply referred to
as the (delay) threshold control model. Figure3 compares
deterministic and stochastic dynamics of the delay thresh-
old control model and the intermittent control model. The
delay threshold control model, for which Soff is defined by
upper and lower thresholds of the tilt angle θ (two vertical
threshold lines at ± θth in the θ–ω plane) sandwiched by two
Son regions, can stabilize the inverted pendulum, when (and
probably only when) the on-subsystem is stable, as shown in
Fig. 3A. A stochastic version of the threshold control model
exhibits a switching between oscillatory dynamics near the
right and the left boundaries of Soff as in Fig. 3C-1, with its
power spectral density (PSD) function for the time series of
θ(t) as shown in Fig. 3C-2. Since the stabilizer of the system
in this case is the stable on-subsystem, the upright posture
of the inverted pendulum with the delay threshold controller
cannot be stable, when the on-subsystem is unstable with
the P–D parameters located outside of the D-shaped sta-
bility region, particularly for small values of P and D of
Eq. (9), leading to a fall as shown in Fig. 3B. In contrast to
the threshold control model, the intermittent control model,
for which Soff is arranged to cover the stable manifold of the
off-subsystem in the second and fourth quadrant of the θ–ω
plane, can stabilize the inverted pendulum even with small

values of P and D for the unstable off-subsystem. This is
made possible by repeated use of the contractive dynamics
associated with the stable eigenmode of the off-subsystem
as shown in Fig. 3D and E for the deterministic dynam-
ics. Figure3F-1 shows stochastic dynamics corresponding to
Fig. 3E, forwhich thePSDexhibits a power-law-like property
in the low-frequency band between 10−3 and 10−1 Hz with
the scaling exponent β ∼ 1, as shown in Fig. 3F-2. Note that
the power-law scaling exponent β in the low-frequency band
was evaluated using a least square linear fit for the frequency
range of [0.004–0.1] Hz throughout the paper in this sequel.
The comparisons illustrated in Fig. 3 demonstrate that the
intermittent control model is more robust against changes in
the P–D parameter values, compared to the threshold control
model. Moreover, because the on-subsystem for the inter-
mittent control model can bring the state point in Son to Soff
regardless of whether it is unstable or stable on-subsystem,
the intermittent control model is more robust also against the
feedback delay-time �, compared to the threshold control
model.

Evidence is accumulating to support the intermittent con-
trol model as the mechanism of human postural control for
stabilizing quiet stance (e.g., Perera et al. 2018; Xiang et al.
2018; Tanabe et al. 2017; Tietavainen et al. 2017; McKee
and Neale 2019; Suzuki et al. 2020; Nakamura et al. 2023;
Tigrini et al. 2000). Particularly, we showed recently that the
intermittent control model can better fit postural sway data
from healthy young adults, compared to the stiffness con-
trol model (i.e., the model without Soff), using a technique
of Bayesian parameter inference for the model (Suzuki et al.
2020). Interestingly, postural sway data from patients with
Parkinson’s disease exhibiting severe postural symptoms can
be better fitted by the model with less intermittency, i.e., by
the model with no or a very small off-region Soff, suggest-
ing that the appropriate placement of the off-region Soff is
critical for the postural stabilization. Moreover, based on the
fact that the basal ganglia is responsible for the cause of pos-
tural instability in patients with Parkinson’s disease, we can
speculate that information processing performed by the basal
gangliamight be associatedwith the determination of on- and
off-regions for the intermittent controller.

The purpose of this study is to provide insights into how
the on–off switching-type state-dependent feedback con-
troller of the intermittent control model can be established
in the brain for stabilizing quiet stance. Multiple lines of
evidence suggest that the basal ganglia are involved in the
postural stabilization as well as in the postural instability in
patients with Parkinson’s disease (Takakusaki et al. 2003;
Perera et al. 2018; Yamamoto et al. 2011). Moreover, it has
been considered that the basal ganglia play a central role
in reinforcement learning for action selection (Doya 2000;
Bostan and Strick 2018). Taken together, we hypothesize that
an appropriate state-dependent selections of “on” and “off”
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Fig. 3 Comparisons between delay threshold control model and the
intermittent control model. A–C A delay threshold control model with
(P, D) = (0.25mgh, 100) for a stable on-subsystem, as indicated by
the closed circle in Fig. 2. D–F The intermittent control model with
(P, D) = (0.25mgh, 10) for an unstable on-subsystem, as indicated
by the diamond in Fig. 2. Soff. Son and Soff are separated by the bound-

aries defined by θ� = 0, ω� = αθ� and θ2� +ω2
� = ρ2. The parameter

α determines the slope of the on–off boundary line ω� = αθ�. The
parameter ρ determines the small circular sensory dead zone around the
upright position. PanelsC-1,C-2 and F-1 and F-2 are for the stochastic
dynamics with noise (σ = 0.2Nm/rad)

of the active feedback control during quiet stance is acquired
through reinforcement learning. In this study, we explore an
instantaneous reward/cost function, whose cumulative val-
ues lead to the intermittent control strategy that exploits the
stable eigenmode of the saddle of the off-subsystem using
the unstable oscillation of the on-subsystem with small P–
D feedback gains.

2 Materials andmethods

In this study, the on-subsystem as a DDE with Eq. (9) is
approximated by the following ordinary differential equation
(ODE):

(I − D�)θ̈ + (b + D − P�)θ̇ + (k + P − mgh)θ = σξ,

(11)

which is obtained using the Taylor expansions of θ(t−�) ≈
θ(t) − θ̇ (t)� and θ̇ (t − �) ≈ θ̇ (t) − θ̈ (t)� for a small �. It
has been confirmed that this ODE approximation of the orig-
inal DDE works satisfactory for the current control system
(Stepan andKollar 2000), even for stochastic dynamics in the
presence of process noise (Suzuki et al. 2023). However, note
that stability regions of the delayed system in Fig. 2 and the
stability region of the non-delayed ODE system of Eq. (11)
are different to a certain extent (Insperger 2015).

The use of this ODE approximation is to avoid issues aris-
ing from the feedback delay in reinforcement learning (Nath
et al. 2021). Related studies that deal with reinforcement
learning for the model with the DDE on-system will be pre-
sented elsewhere. Values of the parameters in themodel were
set as summarized in Table1 in Appendix, according to the
previous studies (Winter et al. 1998; Peterka 2002). The state
space representation of Eq. (11) is written as

d

dt

(
θ

ω

)
=

(
0 1

− k+P−mgh
I−D�

− b+D−P�
I−D�

) (
θ

ω

)
+

(
0

σ̃ ξ

)
,

(12)

where σ̃ = σ/(I − D�). Defining the state vector as x �
(θ ω)T , the linear stochastic differential equation of Eq. (12)
is denoted formally by

dx

dt
= A�(P, D)x + ̃(D)ξ, (13)

with ̃ � (0 σ̃ )T . For a given set of gain parameters P and
D, including the casewith P = D = 0 for the off-subsystem,
with an initial state x0, the deterministic flow φ(x0, t) of
Eq. (13) with σ = σ̃ = 0 is expressed analytically as

φ(x0, t; P, D) = exp (A�(P, D)t) x0. (14)
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We consider dynamics of a time-discretized version of
Eq. (13), in which dynamics of the model between two
consecutive time instants are represented by the analytical
solution of Eq. (14). That is, a state transition governed by
Eq. (14) from xn at the discrete time n to xn+1 at the next
time (n + 1) for a small time step δt is given by

xn+1 = φ(xn, δt; P, D), (15)

The effective intensity of noise to determine a stochastic state
transition for Eq. (14) is obtained based on the following
Euler–Maruyama discretization of Eq. (13):

xn+1 = [I + δt A�(P, D)] xn + ̂ξn, (16)

where ̂ � (0 σ̂ )T �
√

δt̃. Using the fact that the Taylor
expansion of Eq. (15) is

φ(xn, δt; P, D) � [I + δt A�(P, D)] xn, (17)

we approximate the stochastic state transition of the system
by

xn+1 = φ(xn, δt; P, D) + ̂ξn, (18)

which is used as a basis for computing the state transi-
tion probability matrix as described later, instead of using
Eq. (16). The use of Eq. (18) provides a better approximation
of Eq. (13) with a relatively large size of the time step δt . In
this study, the time step δt = 0.01 s was used as the sam-
pling period, the control period, as well as the update period
for the reinforcement learning. Although we never perform
numerical integration for Eq. (16), we notice that Eq. (16)
as a time-discretized version of Eq. (12) or Eq. (13) can be
rewritten as

(
θn+1

ωn+1

)
=

(
1 δt

mgh−k
I−D�

δt 1 − b−P�
I−D�

δt

) (
θn
ωn

)

−
(

0
δt

I−D�

) (
P D

) (
θn
ωn

)
+

(
0

σ̂ ξn

)
. (19)

For the system matrix A�(P, D) of Eq. (13) defined above,
denoting the matrix of the first term of Eq. (19) by Â�, the
column vector of (0 δt/(I − D�))T by B̂�, and the state
vector by xn = (θn ωn)

T , we have the following abstract
form of the state equation:

xn+1 = Â�xn + B̂�un + ̂ξn, (20)

in a form similar to the standard linear feedback control
system, by which K � (P D) and un � −Kxn =

−Pθn − Dωn can be viewed as the feedback gain and the
feedback control torque, respectively. Moreover, if there is
no delay (� = 0), all equations defined by Eqs. (12), (13),
(19) and (20) become the following simple linear feedback
control system:

xn+1 = Â0xn + B̂0un + ̂ξn, (21)

for which the optimal feedback control gains for the linear
quadratic regulator (LQR) may be determined analytically.

2.1 A finite Markov decision process and
reinforcement learning

We consider optimal feedback control strategies that can sta-
bilize the upright position of the inverted pendulum model
represented by Eq. (18) for several types of cost functions.
Specifically, we explore optimal feedback gains P and D
that are allowed to vary depending on the state of the pendu-
lum. Namely, we consider the feedback gain K � (P, D) as

a function of x , i.e., K (x) = (P(x), D(x)), and explore the
optimal distribution of K (x) over the phase plane of x using
reinforcement learning (more specifically, using a method of
the dynamic programingwith a value iteration). Several types
of instantaneous cost functions were examined to identify the
one that leads to the intermittent control strategy.

Prior to solving such an optimization problem, we dis-
cretize the state space of the model as well as the actions
characterized by the feedback ankle joint torque, in order
to make the problem simple (Suzuki et al. 2023), without
use of the neural-network-based function approximators for
a value function (critic) and for an action generator (actor).
By the discretization as summarized later, Eq. (18) can be
considered as a model for a finite Markov decision process.
Specifically, we consider a Markov decision process M(π)

characterized by {X ,A, pT , r , π}, where

• X � x is a set of the finite states
• A � a is a set of the finite actions
• pT (xn+1|xn, a) : X×X×A → [0, 1] is a state transition

probability matrix
• r(xn+1, xn, a) : X × X × A → R is an instantaneous
cost function

• π(x) : X → A is a deterministic policy.

Each element of M(π) is defined in this sequel.
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A set of the finite statesX

We consider a rectangular region DIN in the x-plane (θ–ω
plane) centered at the origin, satisfying 0 ≤ |θ | ≤ 0.0505
and 0 ≤ |ω| ≤ 0.0305, referred to as the state domain.
The state domain DIN was discretized into square-shaped
small elements (6161 elements in total). For each element,
the horizontal and vertical side lengths were set to δθ =
1.0×10−3 rad and δω = 1.0×10−3 rad/s, respectively. The
center point of each element was defined as a discrete state,
and a set of all such center points was referred to as XIN.
Let DOUT be the region outside the DIN in the x-plane. If a
state of the pendulum is located in DOUT, regardless of its
position inDOUT, such a state is considered as a unique state,
referred to as XOUT representing a fall. Thus, including the
fall-state,we consider a set of 6162finite states of the inverted
pendulum in total, referred to as X � XIN ∪XOUT, which is
the discretized version of D � DIN ∪ DOUT.

A set of the finite actionsA

We consider the active feedback control torque only in the
form of the PD controller with the state-dependent gains
for the system of Eq. (18). That is, in terms of the Euler–
Maruyama version of Eq. (18) described by Eq. (20), we
consider the active feedback control torque in the form of

un = −K (xn)xn = −P(xn)θn − D(xn)ωn . (22)

Note that values of the P and D gains affect dynamics of
the system with Eq. (18), not only simply through the way
of usual PD-feedback control, but also through the system
matrix A�(P, D). Since the gains P(xn) and D(xn) that
parameterize thematrix A� are the function of xn , the system
of Eq. (18) is a nonlinear control system.

The range of possible values of P(xn) and D(xn) for any
state xn ∈ X is set as 0 ≤ P(xn) ≤ 1.0mgh Nm and
0 ≤ D(xn) ≤ 200 Nms/rad, which defines the P–D domain.
The P–D domain is discretized into a set of parameter points
(P, D), referred also to as P–D pairs, by the step sizes of
δP = 0.05mgh Nm and δD = 10 Nms/rad, by which we
define a set of 441 (P, D)-points, referred to as the set of
finite actions A. That is, each (Pi , Di )-point represents an
action ai ∈ A (i = 1, . . . , 441) that will be selected by
a policy π and used for a state transition from xn to xn+1.
Dynamics of the system with a selected action are charac-
terized by the topological property of the equilibrium and a
phase portrait of the system by assuming hypothetically that
the action selected for the current state xn is employed per-
sistently and uniformly over the state points x ∈ X . In other

words, we characterize dynamics of the system described by

dx

dt
= A�(Pi , Di )x, (23)

with the action ai = (Pi , Di ) selected for the current state
xn using the topological property of the equilibrium at x = 0
for Eq. (23). Figure4A exemplifies such characterizations
of the system in the case with no feedback delay (� = 0
s). The middle panel of (A) for the P–D domain is filled
by the 441 (Pi , Di )-points for the corresponding actions ai
(i = 1, . . . , 441). Each (Pi , Di )-point is colored differently,
depending on the topological property of the equilibrium of
the system of Eq. (23).We call such a colored P–D domain a
topology colormap. For example, the left-bottom point of the
topology color map in Fig. 4A, indicated by a pink open cir-
cle for the null action with (P, D) = (0, 0), is colored by the
dark blue, which means that the equilibrium point of the sys-
tem with the null action, i.e., when the feedback controller is
switched off persistently, is topologically classified as a sad-
dle (denoted by [S]). The phase portrait of the system in this
case is depicted by the left panel of Fig. 4A, where the phase
plane is also colored by the dark blue that is used to color the
(P, D)-point at (0, 0) in the topology color map. Moreover,
in this case, the hyperbolic vector field, the stable manifold
(blue line) and the unstable manifold (red line) of the saddle
and a few sample trajectories are shown. Another example
of (P, D)-point, located at (P, D) = (0.25mgh, 10) also
indicated by another pink open circle in Fig. 4A, is colored
by the red, which means that the equilibrium point of the
system with the action determined by those small P–D val-
ues is topologically classified as a stable focus (denoted by
[SF]). The phase portrait of the system in this case is depicted
by the right panel of Fig. 4A, where the phase plane is also
colored by the red as is used to color the (P, D)-point at
(0.25mgh, 10) in the topology colormap.Moreover, the con-
verging focal vector field and a sample of the stable spiral
trajectory are shown in the red phase plane. Note that, in
the case with � = 0 s, the system of Eq. (23) is stable if
Pi > (mgh − k) = 0.2mgh, and the corresponding stability
region in the P–D domain is surrounded by the red thick box
in Fig. 4A-middle.

The upper middle panel of Fig. 4B is another topology
color map for the systemwith a feedback delay of� = 0.2 s.
The topology color map in this case is colored differently,
compared to Fig. 4A, due to the delay-induced instability of
the system. The instability occurs at the lower part of the P–
D domain, as indicated by the green region of the topology
color map. The left-bottom point of the topology color map,
for the null action with (P, D) = (0, 0), is colored by the
dark blue as in the case with � = 0 s, i.e., the equilibrium of
the system is a saddle point with the phase portrait shown in
the lower-left panel of Fig. 4B that is the sameas the left-panel
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Fig. 4 The P–D domain was discretized into a set of (P, D)-points
that represent the finite set of actions of feedback control. A topological
property of the system with each specific action a (for a continu-
ous feedback controller) defined by the corresponding (P, D)-point is
color-coded, as shown in the middle panel of each of (A) and (B), which
is referred to as the topology colormap. The panels inA andB are for the
systems with no feedback delay (� = 0 s) and with delay (� = 0.2 s),
respectively. Dynamics of the continuous control model with specific
(P, D)-actions are represented by the phase portraits of the model. In
A, dynamics of the model with two (P, D)-points, indicated by the
pink open circles at (P, D) = (0, 0) and (P, D) = (0.25mgh, 10), are
characterized as a saddle (denoted by S) and a stable focus (denoted by
SF), respectively. In B, dynamics of the model with two (P, D)-points,

the same points as (A) are characterized as a saddle [S] and an unstable
focus [UF], respectively. The instability of the model with (P, D) =
(0.25mgh, 10) is due to the feedback delay. Dynamics of two additional
points at (P, D) = (0.3mgh, 180) and (P, D) = (0.5mgh, 150) are
characterized as a stable node (SN) and a stable focus (SF), respectively.
The intermittent control model, which switches between two unstable
continuous delay feedback control models (� = 0.2 s) defined by the
systemwith the null action (P, D) = (0, 0) and that with the small-gain
action (P, D) = (0.25mgh, 10), is characterized by the phase portrait
shown in the lower-middle of (B), where the phase plane is divided into
two regions, Soff colored by the dark blue and Son colored by the green.
See text for more details

of Fig. 4A. However, the (P, D)-point at (0.25mgh, 10) is
now colored by the green, which means that the equilibrium
point of the systemwith the corresponding action of the small
P–D values is topologically classified as an unstable focus
(denoted by [UF]). The phase portrait of the system in this
case is shown in the lower right panel of Fig. 4B, where the

phase plane is green using the same color for the (P, D)-
point at (0.25mgh, 10). Moreover, the diverging focal vector
field and a sample of unstable spiral trajectory are shown in
the green phase plane.

A typical setup of the intermittent control model describe
in Fig. 3E and F can be characterized by the actions for two
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(P, D)-points on the topology colormap and the correspond-
ing phase portraits (Asai et al. 2009).Namely, the intermittent
control model that switches between unstable off-subsystem
and unstable on-subsystem is defined by the system with
the null action (P, D) = (0, 0) for the off-subsystem and
that with the small-gain action (P, D) = (0.25mgh, 10) for
the on-subsystem representing the delay feedback controller
with� = 0.2 s. This situation is illustrated by the phase por-
trait shown in the lower-middle of Fig. 4B, where the phase
plane is divided into two regions, Soff colored by the dark
blue and Son colored by the green. Note that, in this case, a
sample trajectory of the intermittent control model is gener-
ated in the presence of noise (σ = 0.2Nm). In Fig. 4B, we
exemplify dynamics of the systemwith twomore actions, i.e.,
two (P, D)-points, using their phase portraits: one for stable
node denoted by [SN] with orange color for the (P, D)-point
at (0.3mgh, 180), and the other for stable focus denoted by
[SF]with red color for (P, D)-point at (0.5mgh, 150). These
two parameter sets are closer to the one about (P, D)-point
at (0.5mgh, 270) used frequently for the traditional stiffness
control model (Peterka 2002; Maurer and Peterka 2005).

A state transition probability matrix

A state transition from xn to xn+1 takes place at a time step
n, according to Eq. (18) with a selected action a ∈ A at xn .
We consider a deterministic policy π as a map from x to
a = π(x), by which a point of (P(x), D(x))-pair is selected
from A in the P–D domain for the discretized state x ∈ X .
Specifically, the state transition probability pT (xn+1|xn, a)

is defined by using a stochastic map P : X → X that causes
a state transition xn �→ xn+1. See “Appendix B” for more
details. Briefly speaking, the map P is defined by a compo-
sition of four maps as follows:

P(x) � C ◦ N ◦ G ◦ F(x), (24)

where the first map F is the deterministic state transition
from a discretized state xn ∈ X to a non-discretized state
x Fn+1 ∈ D defined as

x Fn+1 = φ (xn, δt; P(xn), D(xn)) � F(xn; a) (25)

by Eq. (15), where a = π(xn) that selects a pair of gains
P(xn) and D(xn). If x Fn+1 = (θ F

n+1 ωF
n+1)

T ∈ DIN, the
point x Fn+1 is mapped to a point xGn+1 stochastically, which is
represented by the map G : DIN → D as

xGn+1 = G
(
x Fn+1

)
. (26)

The map G determines a small random variation of x Fn+1 in
the θ direction on the θ–ω plane. Such stochasticity of G

is not directly associated with the torque noise σ̂ ξn , but it is
necessary for approximating random dynamics of the second
order ODE system with an additive torque noise (Zorzano
et al. 1999). We define probability of pG(xGn+1) as detailed in
“Appendix B”. The point xGn+1 is further perturbed randomly

by the torque noise ̂ξn , which causes a vertical random
displacement in the ω-direction on the θ–ω plane, according
to the Gaussian distribution with the standard deviation of σ̂ .
This stochastic mapping N : DIN → D is represented as

xNn+1 = N
(
xGn+1

)
. (27)

Finally, the point xNn+1 is mapped to the center of the small
element �DIN or the fall state DOUT that includes xNn+1 by
C : D → X , which is represented by

xn+1 = C
(
xNn+1

)
. (28)

We define a probability of having xn+1 = C ◦ N (xGn+1)

denoted by pCN
(
xn+1 = C ◦ N (xGn+1)

)
using the Gauss

error function as detailed in “Appendix B”. Note that the
point xn+1 ∈ X could be either inXIN orXOUT, in which the
latter means a fall of the pendulum.

In summary, pT (xn+1|xn, a), the probability of the state
transition of xn �→ xn+1 for a given action a characterized
by K (xn) = (P(xn), D(xn)) is defined as

pT (xn+1|xn, a) ∝ pCN

(
xn+1 = C ◦ N (xGn+1)

)

·pG
(
xGn+1 = G ◦ F(xn; a)

)
(29)

The actual values of the state transition probability are deter-
mined by normalizing the probability in Eq. (29) so that the
equality

∑
xn+1∈X

pT (xn+1|xn, a) = 1 (30)

holds for each action a ∈ A. In this way, we prepare a set of
|A| state transition probabilitymatriceswith the size of |X |×
|X |, where |A| and |X | represent the numbers of element of
the sets A and X , respectively.

Instantaneous cost functions

The purpose of this study is to find an instantaneous cost
function r(xn+1, xn, a) that leads to the deterministic pol-
icy π(xn) characterizing the intermittent control strategy.
We consider two types of simple instantaneous cost func-
tions for a state transition from xn to xn+1 by the action
a = π(xn): The first cost function is similar to the one
used for the linear quadratic regulator (LQR), referred to

123



Biological Cybernetics (2024) 118:229–248 239

as r QR(xn+1, xn, π(xn)), with a state-dependent gains. The
other is a modification of r QR(xn+1, xn, π(xn)), referred to
as r QRPD(xn+1, xn, π(xn)), which is introduced specifically
in this study.

The cost function r QR is defined as follows:

r QR(xn+1, xn, π(xn))

=
{
xTn Qxn + u(xn)T Ru(xn) if xn+1 ∈ XIN

100 otherwise if xn+1 ∈ XOUT

(31)

where u(xn) = −K (xn)xn = −(P(xn) D(xn))xn is the
feedback torque at xn for a selected action a = π(xn)
represented by K (xn) = (P(xn) D(xn)). Q is a 2 × 2
semi-definite diagonal matrix, and R is a scalar. In this way,
if xn+1 is not the fall-state, the instantaneous cost, which is
determined by the sum of the deviation (or the error) from
the upright position and the power consumed by the active
feedback torque, will be paid. If xn+1 is the fall-state, a large
punishment cost will be paid.

The cost function r QRPD(xn+1, xn, π(xn)) is defined as
follows:

r QRPD(xn+1, xn, π(xn)) =

⎧⎪⎨
⎪⎩
xTn Qxn + u(xn)T Ru(xn) + wP P(xn)

+wDD(xn) if xn+1 ∈ XIN

100 otherwise if xn+1 ∈ XOUT

(32)

where wP and wD are the non-negative weight coefficients.
This cost is a modification of r QR by adding additional terms
of P(x) and D(x), by which the reinforcement learning will
pursue the small feedback gains, as well as the small error
and power. Note that r QR is a special case of r QRPD with
wP = wD = 0.

The optimal policy determined by the dynamic programing

The optimal deterministic policy a = π(xn) and the associ-
ated optimal value function V π (xn) are determined based on
the value function defined as

V π (x) � Eπ

[ ∞∑
k=0

γ kr(xk+1, xk, π(xk))

∣∣∣∣x0 = x

]
. (33)

where Eπ represents the expectation conditional on a given
Markov decision processM(π), and γ ∈ [0, 1) is a discount
rate. The optimal value function V π (x) is defined by the
following Bellman equation as

V π (x) = min
a=π(x)∈A

{ ∑
x ′∈X

pT (x ′|x, π(x))

[r(x ′, x, π(x)) + γ V π (x ′)]
}

(34)

where pT (x ′|x, π(x)) is the state transition probability
defined above, and the associated optimal deterministic pol-
icy is defined by Sutton and Barto (1999)

π(x) = argmin
a∈A

{∑
x ′

pT (x ′|x, a)[r(x ′, x, a) + γ V π (x ′)]
}
.

(35)

In this study, the optimal value function and the optimal
deterministic policy are determined using the value iteration
algorithm.

Exploration of the learning environment leading to the
intermittent control policy

In this study, we explore the effect of the motor learning
environment, such as the cost function, the discount rate,

intensity of the process noise and the feedback time-delay,
on the optimal policy and the corresponding sway dynam-
ics of the inverted pendulum, and seek a typical set of the
parameters that leads to a control strategy similar to the
intermittent control, using the setup of the Markov decision
processM(π) defined above. More specifically, we explore
the parameter space of {Q, R, wP , wD, γ, σ,�} and try to
find a typical parameter set for which the optimal determin-
istic policy π(x), i.e., distribution of the action determined
by the feedback gains of P(x) and D(x) over the state space
x ∈ X , is close to that for the intermittent control strategy
(Fig. 4B, lower-middle). Namely, the optimal policy obtained
through the reinforcement learning with a variety of param-
eter sets of {Q, R, wP , wD, γ, σ,�} will be compared with
the distribution of P(x) and D(x) for the typical intermittent
controller, denoted by PI (x) and DI (x) with

PI (x) = 0.25mgh and DI (x) = 10 for x ∈ Son
PI (x) = 0 and DI (x) = 0 for x ∈ Soff.

(36)
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3 Results and discussion

Results of our exploration of the instantaneous cost function
in the parameter space of {Q, R, wP , wD, γ, σ,�} for Eq.
(32) are summarized in Fig. 5. Control policy and dynamics
of the model with various optimal controllers obtained for
various sets of {Q, R, wP , wD, γ, σ,�} are compared with
the control policy and dynamics of the intermittent control
model.

The control policy defined by PI (x) and DI (x) in Eq. (36)
and dynamics of the intermittent control model for those
comparisons are depicted in Fig. 5A, i.e., the top row of
Fig. 5, in which the topology color map (topology panel),
state-dependent policy for selecting P-gain on the θ–ω plane
(P-gain panel), state-dependent policy for selecting D-gain
on the θ–ω plane (D-gain panel), state-dependent active
torque (active torque panel), a sample path of the stochastic
dynamics (sample path panel), the corresponding time series
of θ (time series panel), and the PSD of the time series of θ

(PSD panel) are shown in the 2nd to 8th column of Fig. 5A,
respectively. Note that each PSD shown in the 8-th column
of Fig. 5 was obtained by an ensemble average of 30 PSDs
that were computed by FFT of statistically independent 30
θ time series of length 1310.72 s. The first column of Fig. 5
is reserved for presenting a value function of the model with
a given instantaneous cost function (value function panel),
which is absent for Fig. 5A. The topology panel of Fig. 5A
is exactly the same as the lower middle panel of Fig. 4B.
In the P-gain panel of Fig. 5A, the off-region and the on-
region of the θ–ω plane are colored by black (P(x) = 0 for
x ∈ Soff) and dark gray (small gain with P(x) = 0.25mgh
for x ∈ Son), respectively. Similarly, in the D-gain panel of
Fig. 5A, the off-region and the on-region of the θ–ω plane
are colored by black (D(x) = 0 for x ∈ Soff) and gray
(small gain with D = 10 for x ∈ Son), respectively. For
those panels, the stable manifold of the saddle point (blue
line) crosses the center of the off-region. The active torque
shown in the active torque panel of Fig. 5A is null for the
off-region that is colored by green, whereas it exhibits neg-
ative (blue) and positive (yellow) values in the right-upper
and left-lower on-regions of the θ–ω plane. The trajectory of
the stochastic dynamics in the sample path panel of Fig. 5A
is butterfly-wing-shaped that characterizes the intermittent
control strategy. PSD of postural sway exhibit a power-law-
like scaling in the low frequency band (β ∼ 1.0).

3.1 LQR-like cost functions: cases withwP = wD = 0

Control policy and dynamics of the model with no delay
(� = 0) and with the optimal controller for the LQR cost
function that uses r QR in Eq. (31) or r QRPD with wP =
wD = 0 in Eq. (32) with Q = 500I2, R = 0.025 and
γ = 1 are shown in Fig. 5B, where I2 is the 2 × 2 iden-

tity matrix. Note that the weighting coefficients Q = 500I2
and R = 0.025 are used as the reference for the compari-
son in this sequel, which were determined as a result of trial
and error. In this simple LQR case, we consider the state-
independent optimal P and D gains as assumed usually for
LQR problem, and they are computed for the state equation
of Eq. (21) for � = 0 using the discrete-time algebraic Ric-
cati equation under noiseless deterministic situation (σ = 0),
which leads to P(x) = 0.398mghNm/rad and D(x) = 163
Nms/rad, regardless of the state x . In this way, the P-gain
panel and the D-gain panel are colored in Fig. 5B, respec-
tively, by gray (for medium value of P , compared to the P
value for the intermittent control model) and by white (for
very large value of D, compared to the D value for the inter-
mittent control model) uniformly over the θ–ω plane. The
value function in this case is a quadratic surface (value func-
tion panel in Fig. 5B). The equilibrium point is classified as
the stable node [SN], by which the θ–ω plane is colored by
orange (topology panel in Fig. 5B). The active torque exhibits
a linear dependency on θ andω, providing the linear gradient
of the color on the θ–ω plane (active torque panel in Fig. 5B).
Stochastic dynamics in the sample path panel and the time
profile in the time series panel are much less fluctuated com-
pared to the intermittent control model and rigidly clustered
around the origin in the presence of the noise with the com-
mon intensity (σ = 0.2). PSD of postural sway is with a
typical shape for the non-resonant second order system with
plateau power in the low frequency band (β ∼ 0.06).

Figure5C still considers a case with � = 0 and r QR in
Eq. (31) or r QRPD with wP = wD = 0 in Eq. (32) with
Q = 500I2 and R = 0.025, as in the LQR case in Fig. 5B,
but the P and D gains are allowed to vary depending on
the state x . Moreover, the discount rate and the noise inten-
sity are set to γ = 0.99 and σ = 0.2, respectively. Optimal
control policy in this case should be obtained numerically
using the value iteration method. The most notable differ-
ence between Fig. 5B and C appears in the control policy π

for the state-dependent selection of P and D values (P-gain
and D-gain panels). In particular, a region on the θ–ω plane
with very small P gains (zero gain practically), which is col-
ored by black in the P-gain panel of Fig. 5C appears, which
can be regarded as the off-region, around the stable manifold
of the off-subsystem (the blue line), although the off-region
in Fig. 5C is much narrower than the off-region for the inter-
mittent control model in Fig. 5A. The off-region in Fig. 5C
for the topology panel is colored by dark blue, indicating
topological classification of saddle [S] as in the off-region
for the intermittent control model. On the other hand, the
P-gain around the red line, representing the unstable mani-
fold of the off-subsystem in the P-gain panel, exhibits large
values as indicated by the white and light gray color regions,
in which the topological property of the model becomes sta-
ble focus [SF] as indicated by the red regions in the topology
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Fig. 5 Control policy and dynamics of the model with various optimal
controllers obtained for various sets of {Q, R, wP , wD, γ, σ,�}.
For each row, from the left to the right, the optimal value func-
tion V π (x), the topology color map, state-dependent policy for
selecting P-gain, state-dependent policy for selecting D-gain, state-
dependent active torque, a sample path of the stochastic dynamics,
the corresponding time series of θ , and the PSD of the time series
of θ . Deterministic dynamics of the model controlled by acquired
policy are characterized by the topological property of the equi-
librium, including saddle [S] (dark blue), unstable node [UN]
(blue), unstable focus [UF] (green), stable node [SN] (orange),

and stable focus [SF] (red). Values of (Q, R, wP , wD, γ, σ,�):
A The intermittent control model (σ = 0.2, � = 0.2). B
(500I2, 0.025, 0, 0, 1.0, 0, 0), C (500I2, 0.025, 0, 0, 0.99, 0.2, 0), D
(500I2, 0.025, 0, 0, 0.99, 0.2, 0.2).E (500I2, 0.025, 0.001, 0.05, 0.99,
0.2, 0.2), F (5000I2, 0.025, 0.001, 0.05, 0.99, 0.2, 0.2), G (500I2,
0.05, 0.001, 0.05, 0.99, 0.2, 0.2), H (500I2, 0.025, 0.005, 0.05, 0.99,
0.2, 0.2), I (500I2, 0.025, 0.001, 0.001, 0.99, 0.2, 0.2), J (500I2,
0.025, 0.001, 0.05, 0.985, 0.2, 0.2),K (500I2, 0.025, 0.001, 0.05, 0.99,
0.4, 0.2), L (500I2, 0.025, 0.001, 0.05, 0.99, 0.2, 0). See text for
details
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panel. The D-gain panel,which is uniformlywhite in Fig. 5B,
shows black regions with very small D-gain near the 1st and
3rd quadrants. However, configuration of those off-regions
is different from that of the intermittent control model.

In Fig. 5D, the feedback delay time � = 0.2 s is intro-
duced for the parameter environment of Fig. 5C, while keep-
ing the cost-function-related environment (r QR in Eq. (31)
or r QRPD with wP = wD = 0 in Eq. (32) with Q = 500I2
and R = 0.025) unchanged, by which the effect of delay �

alone on the control policy can be manifested. Off-regions of
P-gain in Fig. 5D appear on both sides of the stable manifold
of the off-subsystem (the blue line), which are broader than
those in Fig. 5C. On the other hand, off-regions of D-gain
in Fig. 5D are narrower than those in Fig. 5C, located near
the stable manifold of the off-subsystem. Linear dependency
(linear gradient of the color) of the active torque on the θ and
ω, which are present in Fig. 5B and C, tends to be lost.

In summary, the control policy tends to show on–off
switching by allowing the P and D gain to vary as a function
of the state x , under the LQR-like form of the instantaneous
cost function r QR defined byEq. (31). The off-region appears
near the stable manifold of the off-subsystem, implying that
use of the vector field near the stable manifold, which directs
the saddle point at the origin, is beneficial for reducing both
the error (postural deviation from the upright position) and
the energy consumption by the active feedback controller.
However, size of the off-region selected under the LQR-like
form of the instantaneous cost function is narrower than the
intermittent controlmodel, althoughpresenceof the feedback
delay � makes the off-region slightly larger. Moreover, the
on-region tends to be accompanied by larger P–D gains in
comparisonwith the intermittent controlmodel,whichmakes
the controller for the on-region stable, either stable node [SN]
or stable focus [SF]. Although appearance of selection of the
optimal controllers utilizing switching between unstable off-
subsystem and stable on-subsystem is interesting property,
these are not necessarily similar to the intermittent controller
shown in Fig. 5A.

3.2 LQR-like cost plus feedback gain cost

The reinforcement learning based models (RL-models) with
the feedback delay � and the optimal controller under the
instantaneous cost function accompanied with the same
weights of Q = 500I2 and R = 0.025 as in the LQR
case of Fig. 5C and D, but now with r QRPD in Eq. (32) for
wP = 0.001 and wD = 0.05 exhibit dynamics that are
one of the most similar to those of the intermittent con-
trol model among the examined learning environments, as
shown in Fig. 5E. Specifically, configuration of the off-region
in the panels of topology, P-gain, D-gain, and active torque
in Fig. 5E are quite similar to those of the intermittent con-
trol model in Fig. 5A. Trajectory in the sample path panel in

Fig. 5E is with butterfly-wing-shaped as in the interment con-
trol model, leading to the PSD with a power-law-like scaling
behavior in the low frequency band (β ∼ 1.32). Remarkably,
the topological property of the on-regions in this case are
unstable focus [UF], by which the on-regions in the topology
panel are mostly colored by green, as in the intermittent con-
trol model. This is achieved not only by the relatively small
P-gains in the on-regions, but also by the very small values
(practically zero) of the D-gains that lead tomostly black col-
ored D-gain panel. Moreover, slightly negative slope of the
on–off boundary that makes the on-regions protruded from
the 1st and 3rd quadrants emphasizes the similarity of the off-
region geometry, in comparison with the intermittent control
model with the slope of the on–off boundary line determined
by the ω� = lθ�, as described in Fig. 3.

There are differences between the RL-model in Fig. 5E
and the intermittent control model. Despite the overall sim-
ilarity of the off-region geometry between two models, the
on-regions occupying the 1st and 3rd quadrants are separated
by a vertical band for the RL-model, while those are sepa-
rated only by the circular deadzone around the origin for the
intermittent controlmodel. In this sense, the off-regions of the
RL-model shown in Fig. 5E combine features of the intermit-
tent control model and the threshold control model shown in
Fig. 3. The P-gain for the on-region of the RL-model, which
is colored by gray in the P-gain panel, is slightly larger than
the those of the intermittent control model, which is colored
by dark gray. On the other hand, the D-gain of the RL-model
is mostly zero, by which the D-gain panel is colored mostly
by black, meaning that the D gains of the RL-model are
smaller than those of the intermittent control model for its
on-region. Because of the slightly large P gains in the on-
regions for the RL-model, active torques in the on-regions
for the RL-model are slightly larger than those for the inter-
mittent control model.

Figure5F characterizes another RL-model with 10 times
larger value of Q, i.e., showing the effect of the change only
in the Q value from Q = 500I2 used for the RL-model
in Fig. 5E to Q = 5000I2. The large value of Q penal-
izes the cost more for the postural deviation (error) from the
upright position, which makes the cumulative cost larger for
this model, compared to the one in Fig. 5E, as shown in the
value function panel. Although the off-region geometry for
the P gain does not change a lot, P-gains for the on-region
increase. Moreover, upper right and lower left regions of the
D-gain panel become white, meaning that D-gains in those
on-regions increase. As a result, the upper right and lower
left regions of the topology panel change from green to red,
meaning that the model for those on-regions are stable focus
[SF]. The large gains in the on-regions makes the fluctuation
of the RL-model small, leading to the small scaling exponent
in the low frequency band of the PSD (β ∼ 0.77).
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Figure5G characterizes the RL-model with 2 times larger
value of R, i.e., showing the effect of the change only in the
R value from R = 0.025 used for the RL-model in Fig. 5E to
R = 0.05. The large value of R penalizes the cost more for
the energy consumption by the active torque in comparison
with the RL-model in Fig. 5E. In this case, P and D gains
increase at the upper right and lower left corners of the P
and D gain panels, which makes the model for those regions
stable focus [SF].However, the effect on the overall dynamics
of the RL-model is limited.

Figure5H characterizes the RL-model with 5 times larger
value of wP , i.e., showing the effect of the change only in
the wP value from wP = 0.001 used for the RL-model in
Fig. 5E to wP = 0.005. The large value of wP penalizes the
cost more for the P gain in comparison with the RL-model in
Fig. 5E. Against the intuition that expects the RL-model with
smaller P values, P values in the on-region do not decrease
apparently. Instead, as a natural consequence of the large
penalty for the large P gain values, the RL-model exhibits a
larger off-region that covers not only the stable manifold,
but also the unstable manifold of the off-subsystem. The
larger off-region makes the postural fluctuation larger and
more clearly oscillatory, compared to that in Fig. 5E. Scaling
exponent of the PSD for such oscillatory dynamics in the low
frequency band is less than that for Fig. 5E (β ∼ 0.83).

Figure5I characterizes the RL-model with 1/50 smaller
value of wD , i.e., showing the effect of the change only in
the wD value from wD = 0.05 used for the RL-model in
Fig. 5E to wD = 0.001. The small value of wD does not
consider the cost of D-gain seriously, in comparison with
the RL-model in Fig. 5E, leading to the large increase in D
values for a wide range of the D-gain panel. In this way, the
off-region for the D-gain panel becomes smaller. Because of
the larger on-regions with large D gains, the model for those
on-regions are stable focus [SF], which makes the postural
fluctuation in one of the butterfly-wing smaller, compared to
that in Fig. 5E.

Figure5J characterizes theRL-modelwith slightly smaller
value of the discount rate γ , i.e., showing the effect of the
change only in the γ value from γ = 0.99 used for the RL-
model in Fig. 5E to γ = 0.985. The small value of γ makes
the cost less accumulated, meaning that the policy selection
tends to be performed less globally. This case, together with
next case, provides the RL-models exhibiting dynamics that
are similar to those of the intermittent controlmodel, asmuch
as the RL-model with the learning environments used for
Fig. 5E. Although the off-region is much broader than the
one for the one for Fig. 5E and the one for the intermittent
controlmodel, P-gains in the on-regions are smaller (colored
by darker gray) than the those for the RL-model in Fig. 5E,
whichmakes the P-gains closer to the one for the intermittent
control model. Note that, in this case, the noise intensity for
simulating dynamics of the RL-model was set to σ = 0.4,

although the noise intensity for performing the value iteration
was set to σ = 0.2. This is because σ = 0.2 for simulating
dynamics of theRL-modelwas too small to induce transitions
between the left and the right wings of the butterfly.

Figure5K characterizes the RL-model with 2 times large
value of the noise intensity σ , i.e., showing the effect of
the change only in the σ value from σ = 0.2 used for the
RL-model in Fig. 5E to σ = 0.4. The large value of σ makes
dynamics of the pendulummore unpredictable, meaning that
the policy selection should be performed with larger uncer-
tainty. As stated above, this case provides the RL-models
exhibiting dynamics that are similar to those of the inter-
mittent control model, as much as the RL-model with the
learning environments used for Fig. 5E and J. As in the case
with Fig. 5J, P-gains in the on-regions are smaller (colored
by darker gray) than the those for the RL-model in Fig. 5E,
which makes the P-gains closer to the one for the intermit-
tent control model. Scaling exponent of the PSD in the low
frequency band for this case is larger than that for Fig. 5E
(β ∼ 1.68). This result suggest that the process noise plays a
critical role for making the control policy intermittent using
the unstable on-subsystem with small feedback gains. Intu-
itively, one may expect a selection of large feedback gains
under the noisy environment with larger uncertainty in order
to make the standing posture rigid. Against such an intu-
ition, the reinforcement learning with noisy environment for
the current problem leads to the control policy that selects
smaller P and D gains with the intermittent control. This
might be because the intermittent control that exploits the sta-
ble manifold of the off-subsystem is much more robust than
the threshold control (see Fig. 3) in the presence of feedback
delay, and also it is more energetically efficient compared to
the continuous control.

Figure5L examines the effect of the feedback delay � by
changing the value of � from � = 0.2 used for the RL-
model in Fig. 5E to � = 0. It is apparent by the comparison
between Fig. 5E and L that dynamics in the on-region for the
casewith no delay becomes stable focus [SF]with a selection
of the large P-gains (the red on-regions), while keep the on–
off regions geometry mostly unchanged. This result implies
that the use of the delay-induced unstable oscillation of the
on-subsystem with small P gains in the intermittent control
model can be replaced by the stable oscillation of the subsys-
tem with the large P-gains, which is made possible by the
similarity of the vector fields for stable and unstable focus.
However, the use of small P-gains is much more energeti-
cally efficient, which is available by the presence of feedback
delay, leading to the selection of the unstable oscillation with
small P-gains in the reinforcement learning for stabilizing
the upright posture.
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3.3 Summary and further discussion

In summary, our parameter exploration showed the exis-
tence of learning parameters that lead to the intermittent
control policy. In particular, a reinforcement learning policy
with a balanced tradeoff between error and power, a balance
between P and D gains, and appropriate amounts of the delay
and the process noise lead to the intermittent control strat-
egy. Surprisingly, it appears that process noise and feedback
delay, instead of being noxious for stability, are crucial for
achieving intermittent control that assures a robust form of
dynamic stability, alternating between two unstable subsys-
tems. Those properties exploiting instability for stability are
in stark contrast to another type of intermittent controller that
utilizes a model-based prediction (Gawthrop et al. 2011).

Stochastic dynamics of the RL-models exhibit robust sta-
bility, particularly in the case with the models switching
between unstable off-subsystem and unstable on-subsystem
with small P and D gains. The robustness is ensured by the
geometry of the off-region in the θ–ω plane. Namely, the
geometry of the off-region for the RL-models shown par-
ticularly in Fig. 5E, J and K is a kind of combination of the
off-region of the intermittent control model shown in Fig. 3D
or E and that of the threshold control model shown in Fig. 3B.
Although the threshold control model shown in Fig. 3B with
the tilt-angle-based thresholdmechanism is unstable, the off-
region extended into the 2nd and 4th quadrants of the θ–ω
plane, as in the intermittent control model shown in Fig. 3D
or E and in the RL-models shown in Fig. 5E, J and K, makes
the RL-models stable in a quite robust manner. In those mod-
els, the stable eigenmode of the unstable off-subsystem is
responsible for the robust stability, in which dynamics of the
stable eigenmode of the off-subsystem brings any state point
moved into the off-region from the on-region close to the
upright position in a robust manner (Asai et al. 2009).

One may wonder why the additional terms of cost for the
P and D gains are required to obtain the intermittent control
model. That is, those terms seem redundant, because penal-
izing values of P and D gainsmight be included equivalently
in the penalty for the power consumed by the PD feedback
controller. However, the feedback control torque represents
the sum of proportional and derivative control torques, in
which those two types of torque cannot be evaluated sepa-
rately. On the other hand, the on-subsystem behaving as an
unstable focus [UF] in the intermittent control model should
be operated not only with a small P-gain but also with a
small D-gain simultaneously. It is difficult for the instanta-
neous cost function r QR without the cost terms for P and
D gains to lead to RL-models with small D gains in a wide
range of the θ–ω plane as is often the casewith Fig. 5C andD.
Moreover, reduced penalization for P-gain can easily result
in the increase of D-gain in a broad region of the θ–ω plane
as in Fig. 5I. This is why a balanced penalty on P and D gains

separately is required for obtaining the intermittent control
policy that alternates between two unstable subsystems.

3.4 Limitations

We used the ODE approximation for the DDE on-subsystem
in this study. Although it has been confirmed that the ODE
approximation of the original DDEworks satisfactory for the
current control system (Stepan and Kollar 2000), even for
stochastic dynamics in the presence of process noise (Suzuki
et al. 2023), it is necessary to examine whether the same con-
clusion obtained for the ODE approximated on-subsystem
can be reached even if we use the DDE on-subsystem,
which can be done using methodologies of reinforcement
learning developed for systems with delayed actions (Nath
et al. 2021). Moreover, the results shown in Fig. 5 compared
among only limited sets of the learning parameters, includ-
ingweighting coefficients in the cost function, noise intensity
and discount rate. More intensive parameter explorations are
required to validate our conclusion.

We considered a finite state Markov chain by discretizing
the state space of the model as well as the actions charac-
terized by the feedback ankle joint torque. Although this
simplification allowed us to perform the dynamic program-
ing based evaluations of the optimal controllers, the results
of the current paradigm should be examined using neural-
network-based function approximators for a value function
(critic) and for an action generator (actor), when we consider
the system with the DDE on-subsystem.

4 Conclusion

The intermittent control model describes a novel strategy for
stabilizing human quiet stance (Bottaro et al. 2008; Asai et al.
2009), which is consistentwith recent findings of non-spring-
like behavior of calfmuscles during quiet stance (Loramet al.
2005). It is a hybrid dynamical system that switches between
two unstable subsystems, in which a sequence of actions
performed by a time-delay proportional (P) and derivative
(D) feedback controller is switched between on and off in
a state-dependent manner. In this study, a stochastic delay
differential equation, described by the equation of motion of
a single inverted pendulum stabilized by a delay PD feed-
back controller, was approximated by a discrete-time finite
state Markov chain. We then considered a state-dependent
selection of an action that is performed as a state-dependent
selection of a pair of (P, D) gains. We examined the opti-
mal control policy and associated stochastic dynamics of the
pendulum for a Markov decision process that is defined with
an instantaneous cost function, represented by a weighted
sum of the erroneous deviation from the upright position, the
power consumption by the active controller, and the magni-
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Table 1 Values of the body parameters

I 60kgm2

m 60kg

g 9.81m/s2

h 1.0m

k 471Nm/rad

b 4.0Nms/rad

� 0.2 s

tudes of P-gain and D-gain, in the presence of process noise
and feedback delay. We explored parameters for the learning
environment, including the weighting coefficients, the dis-
count rate for the cumulative cost, the noise intensity and the
delay, and showed that there exist several sets of the learn-
ing parameters that lead to the intermittent control policy
that switches between unstable on- and off-subsystems. The
instantaneous cost function for the reinforcement learning
that leads to the intermittent control policy is characterized as
follows: It exhibits a tolerance for the displacement from the
upright position. It emphasizes reducing the power consumed
by the action. It prefers small values of the D-gain, which
canbe achievedbyputtingweight on the D-gain.Appropriate
amounts of the process noise and the feedback delay, which
are often considered as the source of instability, contribute to
reduce the P-gains, leading to the intermittent control with
switching between two unstable subsystems, which assures
a robust form of dynamic stability.

Appendix A Body parameters in themodel

Typical parameter values of the bodily pendulum are sum-
marized in Table1.

Appendix B The state transition probability

The state transition probability pT (xn+1|xn, a) is defined as
follows (see Fig. 6). First, the deterministic state transition
from a discretized state xn to a non-discretized state x Fn+1 ∈
D is denoted by the map F : X → D defined as

x Fn+1 = φ (xn, δt; P(xn), D(xn)) � F(xn), (B1)

where x Fn+1 is not an element of the finite states X , but a
point of D. If x Fn+1 = (θ F

n+1 ωF
n+1)

T ∈ DIN, the point x Fn+1
is mapped to a point xGn+1 stochastically (Fig. 6A), which is
represented by the map G : DIN → D as

xGn+1 = G
(
x Fn+1

)
. (B2)

The point xGn+1 is either x
N1 or xN2, one of which is selected

stochastically. The point xN1 is located in the small squared
element �DN1

IN that includes the point x Fn+1. The point x
N2

is in the small squared element, either �DN2
IN ∈ DIN or

�DN2
OUT ∈ DOUT, located either right-hand or left-hand

neighbor of �DN1
IN . The pendulum falls, if xN2 ∈ DOUT. We

consider the case of xN2 ∈ �DIN in this sequel. Note that
the center point of any small squared element �DIN is an
element of the discretized finite statesX , with the horizontal
and vertical sides of the square being δθ and δω respectively.
The point xN1 is located at the intersection of the vertical
line passing through the center of the element �DN1

IN and the
horizontal line passing through the point x Fn+1. Similarly, the
point xN2 is located at the intersection of the vertical line
passing through the center of the element�DN2

IN and the hor-
izontal line passing through the point x Fn+1. Probabilities of
the stochastic selection of xN1 and xN2 as the point xGn+1 are
determined using the distance between x Fn+1 and each of x

N1

and xN2, respectively, defined as

dN1
(
x Fn+1

)
�

∣∣∣θN1 (
x Fn+1

)
− θ F

n+1

∣∣∣ , (B3)

dN2
(
x Fn+1

)
�

∣∣∣θN2 (
x Fn+1

)
− θ F

n+1

∣∣∣ , (B4)

where θN1(x Fn+1) and θN2(x Fn+1) are the theta-coordinate val-
ues of xN1(x Fn+1) and xN2(x Fn+1), respectively. Moreover,
θ F
n+1 is the theta-coordinate value of x

F
n+1. Since the element

�DN1
IN includes the point x Fn+1, x

N1 is closer to x Fn+1, com-
pared to xN2. Thus, the inequality of dN1(x Fn+1) < dN2(x Fn+1)

holds. With those distances, x Fn+1 is mapped to xN1 with a
probability of

pG
(
xGn+1 = xN1

)
� dN1

(
x Fn+1

)
/ (dN1 + dN2)

= dN1
(
x Fn+1

)
/δθ, (B5)

and it is mapped to xN2 with a complementary probability of

pG
(
xGn+1 = xN2

)
� dN2

(
x Fn+1

)
/δθ. (B6)

See Fig. 6A and B.
The point xGn+1 illustrated in Fig. 6C is perturbed randomly

by the additive Gaussian noise ̂ξn as themotor noise, which
causes vertical displacement in the ω-direction, according to
the Gaussian distribution with its mean located at ωF

n+1 (ω-
coordinate value of x Fn+1) and the standard deviation of σ̂ .
This stochastic mapping N : DIN → D is represented as

xNn+1 = N
(
xGn+1

)
. (B7)
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Fig. 6 A schematic illustration
of how the state transition and
its probability of the Markov
process model are constructed

Finally, the point xNn+1 is mapped to the center of the small
element �DIN or the fall state DOUT that includes xNn+1 by
C : D → X , which is represented as

xn+1 = C
(
xNn+1

)
. (B8)

By definition of N , the probability of having xn+1 = C ◦
N (xGn+1) is given by

pCN

(
xn+1 = C ◦ N

(
xGn+1

))

= erf

(
upper

[
xGn+1

] − xGn+1√
2σ̂

)

−erf

(
lower

[
xGn+1

] − xGn+1√
2σ̂

)
, (B9)

where erf is the Gauss error function, and upper[xGn+1] and
lower[xGn+1] represent, respectively, the ω-coordinate values
of the upper and the lower sides of the small-squared element
�DIN that includes the point xGn+1. The point xn+1 ∈ X
could be either in XIN or XOUT. In this way, stochastic state
transition xn �→ xn+1 by one time step is defined by P :

X → X as

xn+1 = C ◦ N ◦ G ◦ F(xn) � P(xn). (B10)

In summary, pT (xn+1|xn, a), the probability of the state tran-
sition of xn �→ xn+1 for a given action a characterized by
K (xn) = (P(xn), D(xn)) is defined as

pT (xn+1|xn, a) ∝ pG
(
G ◦ F(xn) = xN1

)

·pCN

(
xn+1 = C ◦ N

(
xN1

))
(B11)

for xn+1 with its θ -coordinate value being the same as that
of x Fn+1 = F(xn), i.e., for xGn+1 = G(x Fn+1) = xN1, and

pT (xn+1|xn, a) ∝ pG(G ◦ F(xn) = xN2)

·pCN (xn+1 = C ◦ N (xN2)) (B12)

for xn+1 with its θ -coordinate value being not the same as
that of x Fn+1 = F(xn) and xGn+1 = F(xn) ± δθ = xN2. The
actual values of the state transition probability are determined
so that the equality

∑
xn+1∈X

pT (xn+1|xn, a) = 1 (B13)

123



Biological Cybernetics (2024) 118:229–248 247

is hold for each action a ∈ A. In this way, we prepare a set
of |A| state transition probability matrices of |X |× |X | size,
where |A| and |X | represent the numbers of element of the
sets A and X , respectively.
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