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Abstract
Negative correlations in the sequential evolution of interspike intervals (ISIs) are a signature of memory in neuronal spike-
trains. They provide coding benefits including firing-rate stabilization, improved detectability of weak sensory signals, and
enhanced transmission of information by improving signal-to-noise ratio. Primary electrosensory afferent spike-trains in
weakly electric fish fall into twocategories basedon thepattern of ISI correlations: non-burstingunits havenegative correlations
which remain negative but decay to zero with increasing lags (Type I ISI correlations), and bursting units have oscillatory
(alternating sign) correlation which damp to zero with increasing lags (Type II ISI correlations). Here, we predict and match
observed ISI correlations in these afferents using a stochastic dynamic threshold model. We determine the ISI correlation
function as a function of an arbitrary discrete noise correlation function Rk , where k is a multiple of the mean ISI. The
function permits forward and inverse calculations of the correlation function. Both types of correlation functions can be
generated by adding colored noise to the spike threshold with Type I correlations generated with slow noise and Type II
correlations generated with fast noise. A first-order autoregressive (AR) process with a single parameter is sufficient to
predict and accurately match both types of afferent ISI correlation functions, with the type being determined by the sign of the
AR parameter. The predicted and experimentally observed correlations are in geometric progression. The theory predicts that
the limiting sum of ISI correlations is −0.5 yielding a perfect DC-block in the power spectrum of the spike train. Observed
ISI correlations from afferents have a limiting sum that is slightly larger at −0.475 ± 0.04 (mean ± s.d.). We conclude that
the underlying process for generating ISIs may be a simple combination of low-order AR and moving average processes and
discuss the results from the perspective of optimal coding.

Keywords Negative interspike interval correlations · Serial correlation coefficients · Dynamic threshold · Noisy threshold ·
Adaptation · Optimal neural coding · P-type electrosensory afferents · Weakly electric fish

1 Introduction

The spiking activity of many neurons exhibits memory,
which stabilizes the neurons’ firing rate and makes it less
variable than a renewal process. In spontaneously active neu-
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rons, a signature of these memory effects can be found in the
serial correlations of interspike intervals (ISIs), which dis-
play a prominent negative correlation between adjacent ISIs.
This is a result of long intervals following short intervals so
that fluctuations from the mean ISI are damped over long
time-scales, thereby stabilizing the firing rate (Ratnam and
Nelson 2000; Goense and Ratnam 2003). Negative correla-
tion between adjacent ISIs, which is the first serial correlation
coefficient (ρ1), can assume a range of values (Farkhooi et al.
2009) from near-zero [close to a renewal spike train, e.g.,
Lowen and Teich (1992); Fisch et al. (2012)] to values close
to −0.9 (Ratnam and Nelson 2000). While more negative
values may suggest a stronger memory effect, the relation-
ship between the extent ofmemory in the spike train and their
ISI correlations is by no means clear, in part due to the diffi-
culty in determining joint interval distributions of arbitrarily
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high orders (van der Heyden et al. 1998; Ratnam and Nelson
2000).

Negative correlations in spontaneous spike trains, or in
spike trains obtained under quiescent conditions, have been
known for many years. Early reports came from lateral line
units of Japanese eel (Katsuki et al. 1950), the retina of the cat
(Kuffler et al. 1957), and subsequently from several neuronal
systems (Farkhooi et al. 2009; Neiman and Russell 2001;
Johnson et al. 1986; Lowen and Teich 1992; Hagiwara and
Morita 1963; Amassian et al. 1964; Bullock and Chichibu
1965; Calvin and Stevens 1968; Nawrot et al. 2007; Fisch
et al. 2012) (seeAvila-Akerberg andChacron 2011; Farkhooi
et al. 2009, for tabulations of negative correlations). In the
active sense of some wave-type weakly electric fish (Hagi-
wara andMorita 1963; Bullock and Chichibu 1965), primary
electrosensory afferents exhibit the strongest known correla-
tions in their adjacent ISIs (Ratnam and Nelson 2000). These
electrosensory neurons are an excellent model system for
studying memory effects and regularity in firing due to their
high spontaneous spike-rates (Chacron et al. 2001; Ratnam
and Nelson 2000; van der Heyden et al. 1998). It is likely
that spike encoders which demonstrate negative ISI correla-
tions have adaptive value because they can facilitate optimal
detection ofweak sensory signals (Goense andRatnam2003;
Goense et al. 2003; Ratnam and Nelson 2000; Ratnam and
Goense 2004; Chacron et al. 2001; Hagiwara and Morita
1963; Nesse et al. 2010; Farkhooi et al. 2011) and enhance
information transmission (Chacron et al. 2005, 2004b, a).

Negative ISI correlations are a characteristic feature of
spike frequency adaptationwhere a constantDC-valued input
to a neuron is gradually forgotten, possibly due to an intrin-
sic high-pass filtering mechanism in the encoder (Liu and
Wang 2001; Benda and Herz 2003; Benda et al. 2010). Two
commonly used models of spike frequency adaptation are
based on: (1) a dynamic threshold, and (2) an adaptation
current, both of which cause increased refractoriness follow-
ing an action potential. In the case of a dynamic threshold,
the increased refractoriness is due to an elevation in firing
threshold, historically referred to as “accommodation” (Hill
1936). This is usually modeled as an abrupt increase in spike
threshold immediately after a spike is output, followed by a
relaxation of the threshold to its normative valuewithout reset
(Buller 1965; Hagiwara 1954; Goldberg et al. 1964; Geisler
and Goldberg 1966; Ten Hoopen 1964; Brandman and Nel-
son 2002; Chacron et al. 2000, 2001; Schwalger et al. 2010;
Schwalger and Lindner 2013). Thus, if two spikes are output
in quick succession with an interval smaller than the mean
ISI, the upward threshold shift will be cumulative, making
the membrane more refractory, and so a third spike in the
sequence will occur with an ISI that is likely to be longer
than the mean. In this way, a dynamic time-varying threshold
serves as a moving barrier, carrying with it a memory of prior
spiking activity. In the case of an adaptation current, outward

potassium currents, including voltage gated potassium cur-
rents and calcium-dependent or AHP currents, can give rise
to increased refractoriness and lead to spike frequency adap-
tation (e.g., Benda and Herz 2003; Prescott and Sejnowski
2008; Liu and Wang 2001; Benda et al. 2010; Jolivet et al.
2004; Schwalger et al. 2010; Fisch et al. 2012). Adapta-
tion currents are usually modeled by explicitly introducing
a hyperpolarizing outward current with a time-varying con-
ductance in the equation for the membrane potential. The
conductance (or a gating variable) will be elevated following
a spike and, as with a dynamic threshold, it will decay back
to its normative value. Both models have been successful
in reproducing nearly identical spike frequency adaptation
behavior for a step input current, and normalized first ISI cor-
relation coefficient (ρ1), although they differ in other details
(Benda et al. 2010).

In this report, we focus on a dynamic threshold model.
A simple dynamic threshold model can accurately predict
spike-times in cortical neurons (Kobayashi et al. 2009;Gerst-
ner and Naud 2009; Jones et al. 2015) and peripheral sensory
neurons (Jones et al. 2015). Further, we had recently pro-
posed that spike trains encoded with a dynamic threshold are
optimal, in the sense that they provide an optimal estimate
of the input by minimizing coding error (estimation error)
for a fixed long-term spike-rate (energy consumption) (Jones
et al. 2015; Johnson et al. 2015, 2016). These results did not
incorporate noise in the model, and so here, we extend our
earlier model by incorporating noise to model spike timing
variability and serial ISI correlations.

In previous work, colored noise or Gaussian noise (or
both) is added to a dynamic threshold, or to an adaptation cur-
rent, or to the input signal so that negative correlations can be
observed (Brandman and Nelson 2002; Chacron et al. 2001,
2003; Prescott and Sejnowski 2008). In these models the first
ISI correlation coefficient ρ1 (between adjacent ISIs) is close
to or equal to−0.5, and all remaining correlation coefficients
ρi , i ≥ 2, are identically zero. In another report (Benda et al.
2010) ρ1 is parameterized, and can assume values between
0 and −0.5. Experimental spike trains demonstrate broader
trends, where ρ1 can assume values smaller or greater than
−0.5, and the remaining coefficients can be nonzero for
several lags, sometimes with damped oscillations and some-
times monotonically increasing to zero (Ratnam and Nelson
2000). In several types of integrate-and-fire models with
adaptation currents (Schwalger et al. 2010; Schwalger and
Lindner 2013), colored and Gaussian noise fluctuations of
different time-scales (slow and fast, respectively) determine
the various patterns of ISI correlations, including positive
correlations. All of these patterns had a geometric structure
(i.e., ρk/ρk−1 = constant). Urdapilleta (2011) also obtained
a geometric structure with monotonically decaying corre-
lation pattern with ρk < 0. These latter studies show that
the role of noise fluctuations, in particular the time-scale of
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fluctuations, is important in determining patterns of ISI corre-
lations. So, far adaptation models with an adaptation current
have successfully predicted patterns of ISIs, but models with
dynamic thresholds have been investigated much less, and it
is not known whether they can accurately predict observed
ISI patterns. Models that can accurately predict experimen-
tally observed correlation coefficients for all lags have the
potential to isolate mechanisms responsible for ISI fluctu-
ations and negative correlations and provide insights into
neural coding. This is the goal of the current work.

Serial interspike interval correlations observed in pri-
mary P-type afferents of weakly electric fish Apteronotus
leptorhynchus are modeled using a dynamic threshold with
noise. The model is analytically tractable and permits an
explicit closed-form expression for ISI correlations in terms
of an arbitrary correlation function Rk , where k is a mul-
tiple of the mean ISI. This allows us to solve the inverse
problem where we can determine Rk given a sequence of
observed correlation coefficients. Theoretically, the limiting
sum of ISI correlation coefficients is −0.5 (a perfect DC-
block), and experimental correlation coefficients are close to
this sum. This model is parsimonious, and in addition to pre-
dicting spike-times as shown earlier, it reproduces observed
ISI correlations. Finally, themodel provides a fastmethod for
generating surrogate spike trains that match a mean firing
rate with prescribed ISI distribution, joint-ISI distribution,
and ISI correlations.

2 Methods

2.1 Experimental procedures

Spike data from P-type primary electrosensory afferents
were collected in a previous in vivo study in Apteronotus
leptorhynchus, a wave-type weakly electric fish (Ratnam
and Nelson 2000). All animal procedures including animal
handling, anesthesia, surgery, and euthanasia received insti-
tutional ethics (IACUC) approval from the University of
Illinois at Urbana-Champaign and were carried out as previ-
ously reported (Ratnam and Nelson 2000). No new animal
procedureswere performedduring the course of thiswork.Of
relevance here are some details on the electrophysiological
recordings. Briefly, action potentials (spikes) were isolated
quasi-intracellularly from P-type afferent nerve fibers in qui-
escent conditions under ongoing electric organ discharge
(EOD) activity (this is the so-called baseline spiking activ-
ity of P-type units). An artificial threshold was applied to
determine spike onset times, and reported at the ADC sam-
pling rate of 16.67 kHz (sampling period of 60 μs). The
fish’s ongoing quasi-sinusoidal EODwas captured whenever
possible to determine the EOD frequency from the power
spectrum, or the EOD frequency was estimated from the

power spectrum of the baseline spike train. Both methods
reported almost identical EOD frequencies. EOD frequen-
cies typically ranged from 750 to 1000 Hz (see Ratnam and
Nelson 2000, for more details).

2.2 Data analysis

P-type units fire at most once every EOD cycle, and this
forms a convenient time-base to resample the spike train
(Ratnam and Nelson 2000). Spike times resampled at the
EOD rate are reported as increasing integers. Resampling
removes the phase jitter in spike-timing but retains long-term
correlations due to memory effects in the spike train. Spike-
times were converted to a sequence of interspike intervals,
X1, X2, . . . , Xk, . . . , XN .

2.2.1 Autocorrelation function

The normalized autocorrelation function for the sequence
of ISIs are the normalized serial correlation coefficients or
SCCs, ρ1, ρ2, ρ3, . . ., with ρ0 = 1 by definition. These
were estimated from time-stamps at the original ADC rate
of 16.67 kHz and at the resampled EOD frequency (Rat-
nam and Nelson 2000). In some afferents, there is a small
difference between the two estimates, particularly in the esti-
mates of ρ1, but this has negligible effect on the results. The
normalized ISI correlation function (i.e., correlation coeffi-
cients) were estimated from the resampled spike trains as
follows:

ρk =
∑M−k

i=1 (Xi − T1)(Xi+k − T1)
(∑M−k

i=1 (Xi − T1)2
∑M−k

i=1 (Xi+k − T1)2
)1/2 , k ≥ 0,

(1)

where T1 is the mean ISI, and M is the number of spikes in a
block, typically ranging from 1000–3000 spikes. Correlation
coefficients were estimated in non-overlapping blocks and
then averaged over [N/M] blocks. There was no drift in the
mean ISI within a block. We usually had about 2.5 × 105

spikes per afferent.
Throughout this work, we will use the term covariance to

refer to the mean subtracted cross-correlation. If the two ran-
dom variables in question are identical, then we will simply
refer to covariance as variance, and correlation as autocorre-
lation. If the correlation is normalized by the variance, then
we will refer to it as the correlation coefficient. The abbre-
viation SCCs stand for ISI serial correlation coefficients and
are the same as the normalized ISI autocorrelation function
(ACF).

123



614 Biological Cybernetics (2022) 116:611–633

2.2.2 Partial autocorrelation function

In addition to the normalized autocorrelation (SCCs), we
compute the normalized partial autocorrelation φk, k between
Xi and Xi+k by removing the linear influence of the interven-
ing variables Xi+1, . . . , Xi+k−1 (Box and Jenkins 1970).
The notation φk, j means that the process is purely autore-
gressive (AR) of order k, and φk, j is the j th coefficient in
the AR model. Partial autocorrelations provide a convenient
way to identify an AR process, just as the autocorrelation
function, Eq. (1), provides a way to identify a moving aver-
age (MA) process.When the ISIs are AR of order-p, then the
partial correlation function (PACF) is finite with φk, k = 0,
for k > p, however, the autocorrelation function will be infi-
nite. Conversely, when the process is MA of order-m, the
autocorrelation function is finite with ρk = 0, for k > m,
however, the partial autocorrelation function will be infinite.
When the partial autocorrelation and autocorrelation func-
tions are both infinite, the underlying process is neither purely
AR nor purely MA, but is an autoregressive moving average
(ARMA) process of some unknown order (p, m). The par-
tial autocorrelations φ1, 1, φ2, 2, φ3, 3, . . ., can be obtained
for k = 1, 2, 3, . . ., by solving the Yule-Walker equations.
A more efficient method is to solve Durbin’s recursive equa-
tions. Durbin’s formula is (Box and Jenkins 1970),

φk+1, j = φk, j − φk+1, k+1 φk, k+1− j , j = 1, 2, . . . , k, (2)

φk+1, k+1 = ρk+1 − ∑k
j=1 φk, j ρk+1− j

1 − ∑k
j=1 φk, jρ j

, (3)

φ1, 1 = ρ1, (4)

where the ρ j are SCCs obtained from Eq. (1). The φk, j in the
formula are estimates with some mean and standard devia-
tion over the population. To reduce the estimation error, we
can follow the same procedure as for serial correlations by
averaging over blocks.

3 Results

3.1 Experimental results

ISI serial correlation coefficients (SCCs) were estimated
from the baseline activity of 52 P-type primary electrosen-
sory afferents in the weakly electric fish Apteronotus lep-
torhynchus (see Materials and Methods). SCCs from two
example afferents (Fig. 1) demonstrate the patterns of nega-
tive SCCs observed in spike trains, and motivate this work.
Statistical properties of these and other spike trains were
reported earlier (Ratnam and Nelson 2000), with a quali-
tative description of SCCs and some descriptive statistics. A
complete analytical treatment is undertaken here. Two types

A B

Fig. 1 Representative normalized interspike interval (ISI) correlation
functions from two P-type primary electrosensory afferent spike trains
from twofish. For each column, from top to bottom, panels depict a sam-
ple stretch of spikes, sequence of ISIs for the sample spikes (normalized
to mean ISI), and the pattern of ISI correlations.A Type I (ρ1 > −0.5):
non-bursting unit with first ISI correlation coefficient ρ1 = −0.36.
Remaining ρk < 0 diminish to 0. Sum of correlation coefficients (�)
over 15 lags is −0.48. B Type II (ρ1 < −0.5): Strongly bursting unit
with ρ1 = −0.7 with marked alternating positive and negative correla-
tions. Sum of correlation coefficients (�) over 15 lags is −0.49. Spike
trains sampled at 60 μs. Mean ISI ± SD (in ms): 2.42 ± 0.72 (A), and
6.04 ± 3.59 (B). Electric organ discharge (EOD) frequency: 948 Hz
(A), and 990 Hz (B)

of serial interspike interval statistics can be identified accord-
ing to the value taken by ρ1 (the first SCC, between adjacent
ISIs).

1. Type I: −0.5 < ρ1 < 0. Subsequent ρk are negative
and diminish to 0 with increasing k (Fig. 1A). The ISIs
of these afferents are unimodal (shown later) and their
spike trains do not exhibit bursting activity.

2. Type II: ρ1 < −0.5. Subsequent ρk alternate between
positive (ρ2k) and negative (ρ2k+1) values, are progres-
sively damped, and diminish to zero (Fig. 1C). The ISIs
of these spike trains are bimodal with a prominent peak
at an ISI equal to about one period of the electric organ
discharge (EOD) (shown later). These spike trains exhibit
strong bursting.

Afferent fibers sampled from individual fish were a mix
of Types I and II. Additionally we identify a third type that
has not been observed in experimental data (at least by these
authors) but is fairly common in somemodelswith adaptation
(e.g., Brandman and Nelson 2002; Chacron et al. 2001, see
also Discussion). We call this Type III, and for this pattern
of SCCs ρ1 = −0.5 and subsequent ρk are identically zero
(Fig. 1). The Type III pattern is a singleton (i.e., there is only
one SCC pattern in this class).

The baseline spike-train statistics of 52 P-type afferents
reported earlier (Ratnam and Nelson 2000) were analyzed
in detail in this work. All observed units showed a negative
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A

D

CB

Fig. 2 Population summaries of normalized ISI correlation function
for P-type primary afferent spike-trains (N = 52). A. Summaries of
first and second ISI correlation coefficients. A1 Histogram of corre-
lation coefficient between adjacent ISIs (ρ1), ρ̄1 = −0.52 ± 0.14
(mean±s.d.), range−0.82 to−0.25 A2. Histogram of correlation coef-
ficient (rotated counter clockwise by 90o) between every other ISI (ρ2),
ρ̄2 = 0.10 ± 0.18, range −0.18 to 0.57. A3. Anti-diagonal relation-
ship between observed ρ1 (abscissa) and ρ2 (ordinate) (filled circles).
Line describes best fit, ρ2 = −1.18ρ1 − 0.51 with Pearson’s r = 0.94.
B ρ1 as a function of firing rate. Filled black circles are the three exem-
plar neurons considered in this work, and the filled red circles are their
matched models. C ρ1 as a function of coefficient of variation (CV)
of ISIs with Pearson’s r = −0.67. D Mean sum of correlation coeffi-
cients for the population over 15 lags,

∑
ρk = −0.475 ± 0.04. The

population histograms in panels A1 and A2 were reported earlier with
a different bin width (see Ratnam and Nelson 2000, Figs. 7A and B
therein, respectively)

correlation between succeeding ISIs (ρ1 < 0) (Fig. 2A, pan-
els A1 and A3). Experimental spike-trains demonstrated an
average ρ̄1 = −0.52± 0.14 (mean± s.d.) (N = 52). Nearly
half of these fibers had ρ1 > −0.5 (N = 24) while the
remaining fibers had ρ1 < −0.5 (N = 28). The second SCC
(ρ2), between every other ISI (Fig. 2A, panels A2 and A3)
assumed positive (N = 36) or negative (N = 16) valueswith
an average of ρ̄2 = 0.10 ± 0.18. The correlation coefficient
at the second lag (ρ2) is linearly dependent on ρ1 with a pos-
itive ρ2 more likely if ρ1 < −0.5 (Fig. 2A, panel A3). The
correlation between ρ1 and ρ2 is −0.94. The linear relation-
ship is described by the equation ρ2 = −1.18ρ1−0.51, with
a standard error (SE) of 0.06 (slope) and 0.03 (intercept), and
significance p = 1.11×10−25 (slope) and p = 1.42×10−21

(intercept). This is close to the line ρ2 = −ρ1 − 0.5, the sig-
nificance ofwhich is discussed further below. For all afferents

across the population, Fig. 2B depicts ρ1 as a function of the
average firing rate of the neuron, and Fig. 2C depicts ρ1 as
a function of the coefficient of variation (CV) of the ISIs.
Finally, the sum of the SCCs for each fiber taken over the
first fifteen lags (excluding zeroth lag) has a population mean
∑

k ρk = −0.475 ± 0.042 (N = 52) which is just short of
−0.5 (Fig. 2D). Fifty out of 52 afferents had sums larger than
−0.5, whereas the remaining two afferents had a sum smaller
than −0.5 (−0.504 and −0.502, respectively). However, for
these two fibers, the difference from −0.5 is small. We are
not able to state with confidence that the trailing digits of
these two estimates are significant.

3.2 Deterministic dynamic thresholdmodel

In the simplest form of the dynamic threshold model (Jones
et al. 2015), the spike-initiation threshold is a dynamic
variable governed by two time-varying functions: the sub-
threshold membrane potential v(t) and a time-varying or
dynamic threshold r (t) (Fig. 3A). In the sub-threshold
regime, v(t) < r (t). Most models (e.g., Kobayashi et al.
2009) assume that a spike is emitted when v(t) exceeds r (t)
from below. To induce memory, the dynamic threshold is
never reset (Fig. 3A) but suffers a jump in value whenever a
spike is generated and then gradually relaxes to its quiescent
value. This “jump and decay” is a fixed function which is
called the dynamic threshold, and it usually takes the form
h (t) = A exp (−t/τ) where A is the instantaneous jump
in threshold following a spike at t = 0, and τ is the time-
constant of relaxation. Between two spikes tk < t ≤ tk+1

the dynamic threshold is r(t−k ) + h(t − tk) where r(t
−
k ) is

the value assumed immediately before the spike at t = tk . It
captures the sum over the history of spiking activity.

Most neuron models in the literature, including models
incorporating a dynamic threshold, typically integrate the
input using a low-pass filter (i.e., pass it through a leaky
integrator) or a perfect integrator and then reset themembrane
voltage to a constant vr following a spike (e.g., Chacron et al.
2001; Schwalger and Lindner 2013). Some leaky integrators
have been assumed to be non-resetting (e.g., Kobayashi et al.
2009). In the form of the model considered in this work and
earlier (Jones et al. 2015; Johnson et al. 2015, 2016), the
voltage v(t) is not integrated (i.e., there is no filtering), and it
is not reset following a spike. These assumptions remove the
effects of filtering in the soma and dendrites and remove all
the nonlinearities except for the spike-generator, which we
assume generates a sequence of Dirac-delta functions.

For modeling spontaneous activity, we consider a steady
DC-level bias voltage v > 0. In its most general form, a
spike is fired whenever v − r (t) = γ , where γ is a con-
stant spike-threshold (Fig. 3A). Historically, and in much of
the literature γ = 0 (e.g., Kobayashi et al. 2009; Chacron
et al. 2001; Schwalger and Lindner 2013). We use the more
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A B

Fig. 3 Schematic of neuron with deterministic dynamic threshold.A v

is a constant bias voltage that generates spontaneous activity, r (t) is a
dynamic threshold, γ is a spike threshold such that a spike is emitted
when v − r (t) = γ . Following a spike, the dynamic threshold suffers
a jump of fixed magnitude A. The membrane voltage is non-resetting.
Spike times are t0, t1, t2, . . ., etc. Historically, the spike threshold was
set to zero, i.e., γ = 0 and a spike is fired when v = r (t). Although
it makes no difference to the results presented here, the more general
form with γ is considered for reasons entered in the discussion. B The

spike encoder with dynamic threshold can be viewed as a feedback con-
trol loop where the spike-train δ (t − ti ) is filtered by h (t) to generate
the time-varying dynamic threshold r (t) which can be viewed as an
estimate of the membrane voltage v(t). The comparator generates the
estimation error e(t) = v − r (t) (see also Panel A). The estimation or
coding error drives the spike generator, and a spike is fired whenever
e(t) ≥ γ . The simplest form for the dynamic threshold (the estimation
filter) h (t) mimics an RC membrane whose filter function is low-pass
and given by h (t) = A exp (−t/τ). This is the form shown in panel A

general form with a constant, nonzero γ . The specific value
assumed by γ plays a role in optimal estimation of the stim-
ulus (Jones et al. 2015; Johnson et al. 2016) but does not
influence serial correlation coefficients. This is addressed in
the discussion. The major advantage of these simplifications
is that they allow us to focus on the role of the dynamic
threshold element h (t) in generating SCCs.

To make explicit the presence of memory, we note that the
condition for firing the kth spike at tk is met when

v − r (tk) = v − (v − γ + A)

k−1∑

i=1

exp

(

− tk − ti
τ

)

= γ.

(5)

It is evident that memory builds up because of a summa-
tion over history of spiking activity. The spike encoder with
dynamic threshold implicitly incorporates a feedback loop
(Fig. 3B) and so a different view of the above model is to
think of the dynamic threshold r (t) as an ongoing estimate
of the membrane voltage v (t). Here, the dynamic threshold
h (t) = A exp (−t/τ) acts as a linear low-pass filter. It filters
the spike train to form an ongoing estimate r (t) of the volt-
age v (t). The instantaneous error in the estimate (the coding
error) is then e (t) = v (t) − r (t) (Fig. 3B). When the error
exceeds γ , a spike is output and the threshold increases by
A to reduce the error. The time-varying dynamic threshold
tracks v (t)much like a home thermostat tracks a temperature
set-point (Fig. 3A). Viewed in this way, it is the estimation
error, and not the signal v (t), which directly drives the spike
generator and determines when the next spike should be gen-
erated (Fig. 3B).

From Fig 3A, we can approximate the exponential with a
piece-wise linear equation when the ISI is small. If ti−1 and
ti , i ≥ 1, are successive spike-times (Fig. 3B), then the time
evolution of the dynamic threshold r (t) is given by

r (t) = (v − γ + A) exp(− t − ti−1

τ
), ti−1 < t ≤ ti ,

= (v − γ + A)(1 − t − ti−1

τ
) + O((t − ti−1)

2). (6)

Note that v, γ , A, τ are constant, and so we can define m =
(v − γ + A) /τ so that the slope of the decaying dynamic
threshold is −m. The ISI can be obtained directly as (see
Appendix for details)

ti − ti−1 = Aτ

v − γ + A
= A

m
= Constant , (7)

which is the deterministic firing rule for a spike generator
with a constant, DC-level input voltage.

3.3 Stochastic extension of the dynamic threshold
model

In the schematic shown in Fig. 3B, noise injected in the body
of the feedback loop will reverberate around the loop and
generate memory. In the literature, a stochastic extension of
this model is usually v − r (t) + w (t) = 0, where w is inde-
pendent Gaussian noise. That is, noise is continuous. Here,
we consider a discrete, noisy threshold γ . Subsequently, we
will provide some results for a noisy time-constant τ in the
dynamic threshold element.
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Figure 4 depicts the stochastic dynamic threshold model
where the spike threshold (γ ) is a stochastic process.All other
aspects of the model are unchanged from the deterministic
model (Fig. 3). Let γ be a discrete wide-sense stationary
processwithmeanE[γ ], discrete autocorrelation functionRk

and power E
[
γ 2

] = R0. The spike threshold with additive
noise assumes the random value γi , i ≥ 1 immediately after
the (i − 1)th spike and remains constant in the time interval
ti−1 < t ≤ ti (Fig 4A) (Chacron et al. 2004a; Gestri et al.
1980). Thus, the i th spike is emitted when the error satisfies
the condition

e (ti ) ≥ γi , for t > ti−1. (8)

Subsequently the instantaneous value of the dynamic thresh-
old jumps to a higher value specified by v − γi + A, and
the noisy spike threshold assumes a new value γi+1. From
Fig. 4A proceeding as before

ti − ti−1 = 1

m
{γi − γi−1 + A} . (9)

The mean ISI is therefore E
[
ti − ti−1

] = A/m as in
the deterministic case given by Eq. (7). From the assump-
tion of wide-sense stationarity, the autocorrelation function
E

[
γi γ j

]
can bewritten asR

(
ti − t j

)
. This is a discrete auto-

correlation function whose discrete nature is made clear in
the following way (see also Appendix). Denote the mean of
the kth-order interval by Tk = E[ti+k − ti ], then the mean
ISI is T1 (= A/m), and further Tk = kT1. A realization of
the random variable γ is generated once every ISI and thus,
R takes discrete values at successive multiples of the mean
ISI, i.e., R (T1), R (T2), etc., and will be denoted by R1, R2,
etc., respectively. As noted before, R0 is noise power. That
is, we can write

R (ti+k − ti ) = R (Tk) = Rk , (10)

where k is the number of intervening ISIs. The serial correla-
tion coefficients at lag k are defined as (Cox and Lewis 1966)

ρk = Cov ((ti − ti−1) , (ti+k − ti+k−1))

Var (ti − ti−1)
1/2 Var (ti+k − ti+k−1)

1/2 . (11)

For a wide-sense stationary process, the covariances are con-
stant, so the subscript i can be dropped. From the relations
and definitions in Eqs. (9), (10), and (11), and after some
routine algebra (see Appendix), we obtain

ρ0 = 1 , (12)

ρk = −Rk−1 −2Rk +Rk+1

2 (R0 −R1)
, k ≥ 1. (13)

Further below we determine the Rk from experimental data.
The serial-correlation coefficients given by Eqs. (12) and

(13) are independent of the slope m of the decay rate of the
dynamic threshold, and its gain A. Thus, for a constant input
the observed correlation structure of the spike-train is deter-
mined solely by the noise added to the deterministic firing
threshold γ .

3.3.1 Limiting sum of ISI correlation coefficients and power
spectra

We make the assumption that the process γ is aperiodic and
the autocorrelation function RN → 0 when N → ∞. That
is, the noise process decorrelates over long time-scales. From
this assumption and Eq. (13), it follows that (see Appendix)

∞∑

k=1

ρk = −1

2
. (14)

This is the limiting sum of ISI serial correlation coefficients.
Let the mean and variance of ISIs be denoted by T1 and
V1, respectively, and the coefficient of variation of ISIs as
C = √

V1/T1. If P (ω) is the power spectrum of the spike
train, then the DC-component of the power is given by (Cox
and Lewis 1966)

lim
ω→0

P (ω) = C2

2πT1

(

1 + 2
∞∑

k=1

ρi

)

. (15)

Introducing Eq. (14) into Eq. (15), we obtain

lim
ω→0

P (ω) = 0 , (16)

yielding a perfect DC block.
The limiting sum of SCCs from experimental spike trains,

with the sum calculated up to 15 lags, is depicted in Fig. 2D.
The population of afferents demonstrated a range of limiting
sums with mean sum of −0.475±0.04. As noted earlier, the
limiting sum was less than−0.5 in only two afferents, where
the sums were estimated as −0.505 and −0.502.

3.3.2 Predicting Type I and Type II serial correlation
coefficients

In the relationships for the SCCs given by Eqs. (12) and
(13), the noise process that drives the spike generator has an
unknown correlation function R which must be determined
so as to predict experimentally observed SCCs. Here, we
are interested in identifying the simplest process that can
satisfactorily capture observed SCCs.

Consider aGauss–Markov, i.e.,Ornstein–Uhlenbeck (OU)
process which relaxes as exp

(−t/τγ

)
with relaxation time

τγ , where γ signifies the spike threshold. We are interested
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A
B

Fig. 4 Schematic of a neuron with dynamic threshold and stochastic
firing threshold. Panel descriptions follow Fig. 3 and only differences
are noted. A The spike threshold is γi = v − r (t) where γi is a ran-
dom value generated at t+i−1, and held constant until the next spike at
ti . The discrete noise sequence γi is generated by a discrete wide-sense
stationary process with mean γ and unknown discrete autocorrelation

function Rk . The goal is to determine Rk which will generate a pre-
scribed sequence of ISI serial correlation coefficients ρk . To reduce
clutter, the spike threshold v − γi is depicted as γi . B Block diagram
showing the stochastic modification of the spike threshold. Symbols
and additional description as in text and Fig. 3

A B C

D E F

Fig. 5 Threshold noise, γk : Normalized autocorrelation (top row, Rk )
and partial autocorrelation functions (bottom row, calculated from Rk
and Eqs. 2, 3, and 4).AGenerates Type I ISI SCCsmatched to the affer-
ent depicted in Fig. 1A with no bursting activity. B Generates Type II
ISI SCCs from an afferent with moderate bursting activity.CGenerates
Type II ISI SCCsmatched to the afferent depicted in Fig. 1Bwith strong

bursting activity. Autocorrelation function that matches Type III SCCs
will be zero for all nonzero lags (not shown). Panels D–F show partial
autocorrelation functions of the corresponding noise process shown in
panels (A–C), respectively. The partial autocorrelations are nonzero for
the first lag, and zero for all lags k > 1. By design, the noise generator
is a first-order autoregressive (AR) process (see Eqs. 18 and 22 forRk )
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in a discrete-time realization of the process. We first con-
vert the decaying exponential to a geometric series where
the time-base is in integer multiples of the mean ISI (see
Sect. 3.3 and Eq. 10). Thus, the mean ISI becomes the
“sampling period” and the exponential can be sampled at
multiples of T1, i.e., t = kT1, with k = 1, 2, 3, . . ..
Following this procedure, the continuous-time relaxation
process exp

(−kT1/τγ

)
transforms to a discrete-time (sam-

pled) geometric serieswitha−k = exp
(−kT1/τγ

)
,where the

parameter a = exp
(−T1/τγ

)
< 1. In the discrete formalism,

the continuous-time first-order Gauss–Markov process (OU
process) with relaxation time τγ , transforms to a first-order
autoregressive (AR) process with parameter a. We show this
below, where we define two first-order AR processes which
will generate Type I and Type II SCCs, respectively.

Type I serial correlation coefficients Type I afferent spik-
ing activity demonstrates serial correlations where −0.5 <

ρ1 < 0, and subsequent ρk are negative and diminish to 0
with increasing k (Fig. 1A). These spike trains have a uni-
modal ISI and do not display bursting activity. They can be
generated from the ansatz, a first-order AR process

γk = aγk−1 + wk, (17)

where γk is the noise added to the threshold at the kth spike
(Fig. 4), a is the relaxation time of the discrete noise process
(see above), and wk is white noise input to the AR process.
The output γ is wide-sense stationary, and its discrete auto-
correlation function Rk is

Rk = ak

1 − a2
. (18)

Equations (13) and (18) yield the geometric series

ρk = −ak−1 (1 − a)

2
, k ≥ 1. (19)

From Eq. (19), and noting that 0 < a < 1, we conclude
that ρ1 > −0.5, ρk < 0 for all k, | ρk−1 |>| ρk |, and
ρk → 0 as k → ∞. This is the observed Type I pattern of
SCCs. Further, summing the geometric series Eq. (19) yields∑

k≥1 ρk = −0.5 as stated in Eq. (14). The AR parameter
a can be estimated from experimentally determined SCCs.
From Eq. (19) this is

a = 1 + 2ρ1 . (20)

In practice, a better estimate is often obtained from the ratio
a = ρ2/ρ1, where ρk are available from experimental data.

Wemodel a Type I P-type primary electrosensory afferent
depicted in Fig. 1A using a noisy threshold with correla-
tion function Rk specified by Eq. (18) and shown in Fig. 5A.
The dynamic threshold parameters were determined from the

experimental data, and tuned so that they matched the affer-
ent SCCs, ISI, and joint distributions (Fig. 6). By design,
the noise process is first-order autoregressive, and this is
reflected in the partial autocorrelation function calculated
from the noise samples (Fig. 5D). The top row (Fig. 6A–
C) depicts the ISI distribution, joint ISI distribution, and
the serial correlation coefficients, respectively. Type I spike
trains do not display bursting activity and their ISI distri-
bution is unimodal. The bottom row (Fig. 6D–F) shows data
from amatched model using noise correlation function given
by Eq. (18). SCCs of adjacent ISIs ρ1 are −0.39 (data) and
−0.40 (model). The mean sum of SCCs are−0.48 (data) and
−0.5 (model). Thus, the observed pattern of Type I SCCs is
reproduced.

Type II serial correlation coefficientsType II afferent spik-
ing activity demonstrates serial correlations where ρ1 <

−0.5 and successive ρk alternate between positive (ρ2k)
and negative (ρ2k+1) values, are progressively damped, and
diminish to zero (Fig. 1B). These spike trains have bimodal
ISIs and display bursting activity. Proceeding as before, they
can be generated from the ansatz, a first-order AR process

γk = −aγk−1 + wk, (21)

with discrete autocorrelation function

Rk = (−a)k

1 − a2
. (22)

Equations (13) and (22) yield the geometric series

ρk = − (−a)k−1 (1 + a)

2
, k ≥ 1 . (23)

From Eq. (23), and noting that 0 < a < 1, we conclude that
ρ1 < −0.5, ρ2k > 0, ρ2k+1 < 0, | ρ2k |>| ρ2k+1 |, and
ρk → 0 as k → ∞. This is the observed Type II pattern of
SCCs. Further, summing the geometric series (Eq. 23) yields
∑

k≥1 ρk = −0.5 as stated in Eq. (14). The AR parameter
a can be estimated from experimentally determined SCCs.
From Eq. (23) this is

a = −(1 + 2ρ1) . (24)

As noted for Type I SCCs a better estimate is often obtained
from the ratio a = −ρ2/ρ1. Finally, we note that the Type I
formalism extends nicely to the Type II formalism with the
only difference being that the coefficient of the first-order
process (a) becomes negative. This simple substitution in
Eqs. (18), (19), and (20) will result in Eqs. (22), (23), and
(24), respectively

Wemodel Type II P-type primary electrosensory afferents
using a noisy threshold with correlation function Rk speci-
fied by Eq. (22). The noise correlation function and dynamic
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A B C

D E F

Fig. 6 Type I neuron with no bursting activity. Top row depicts experi-
mental spike-train from a P-type primary electrosensory afferent.AThe
spike train has a unimodal interspike interval distribution (ISI) and does
not display bursting activity. Abscissa is ISI in multiples of electric
organ discharge (EOD) period and ordinate is probability. B Joint inter-
spike interval distribution showing probability of observing successive
intervals ISI (i) (abscissa) and ISI (i + 1) (ordinate). The size of the
circle is proportional to the probability of jointly observing the adjacent
ISIs, i.e., P (i, i + 1). C Normalized correlation (ordinate) as a func-
tion of lag measured in multiples of mean ISI (abscissa). Spike-train

sampled at EOD period. ISI correlations for this afferent are shown in
Fig. 1A at a different sampling rate (see Methods). Bottom row depicts
results for matched model using colored noise with correlation function
given by Eq. (18) and shown in Fig. 5A. Panel descriptions as in top row,
except in Fwhere open circles denote experimental data taken from (C).
EOD period: 1.06 ms, mean ISI: 2.42 ms. To generate model results,
v = 1.845 V, adaptive threshold parameters: A = 0.15 and τ = 30 ms,
AR parameter: a = 0.4 (τγ = 2.09 ms), and R0 = 1.07 × 10−3 V2

(SNR = 35 dB)

threshold parameterswere determined from the experimental
data, and tuned so that they matched the afferent SCCs, ISI,
and joint distributions. We demonstrate with two examples:
(i) moderate bursting activity and (ii) strong bursting activity.
The moderately bursting neuron has a broad bimodal ISI dis-
tribution (Fig. 7A–C), and its ISI and joint ISI distributions,
and SCCs are captured by the matched model (Fig. 7D–
F). The noise correlation function for generating the model
spike-train is depicted in Fig. 5B, and the noise partial corre-
lation function in Fig. 5E. SCCs of adjacent ISI ρ1 are−0.59
(data) and−0.62 (model). The mean sum of SCCs are−0.49
(data) and −0.5 (model). The strongly bursting neuron has
a well-defined bimodal distribution (Fig. 8A–C), and its ISI
and joint ISI distributions, and SCCs are captured by the
matched model (Fig. 8D–F). The noise correlation function
for generating the model spike-train is depicted in (Fig. 5C),
and the noise partial correlation function in Fig. 5F. SCCs of
adjacent ISI ρ1 are −0.7 (data) and −0.7 (model). The mean

sum of SCCs are −0.49 (data) and −0.5 (model). Thus, in
both cases (Figs. 7 and 8), the observed patterns of Type II
SCCs are reproduced. All observed afferent spike trains were
either Type I or Type II.

Wemention in passing that the noise correlation functions
depicted in Fig. 5A–C should not be confused with the SCCs
depicted in panels C and F in Figs. 6, 7, and 8.

Type III serial correlation coefficients Type III afferent
spiking activity demonstrates serial correlations where ρ1 =
−0.5 and all ρk = 0 for k ≥ 2. This is a degenerate case,
resulting in a singleton with a unique set of SCCs. Such spike
trains can be generated by a process where spike threshold
noise is uncorrelated, and hence white. In this case,R0 = σ 2

γ

is noise power, and Rk = 0 for k ≥ 1. We see immediately
from Eqs. (12) and (13) that the ρk have the prescribed form.
Further, we note that trivially

∑
k≥1 ρk = −0.5 as stated in

Eq. (14). We mention in passing, and for later discussion,
that white noise added to the spike threshold is equivalent to
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A B C

D E F

Fig. 7 Type II neuron showing moderate bursting activity. Description
is identical to Fig. 6. Top row depicts experimental spike train from a
P-type primary electrosensory afferent. Bottom row depicts results for
matched model using colored noise with correlation function given by

Eq. (22) and shown in Fig. 5B. EODperiod: 1.31ms,mean ISI: 3.77ms.
To generate model results, v = 1.845 V, adaptive threshold parameters:
A = 0.28 and τ = 26 ms, AR parameter: a = 0.29 (τγ = 3.18 ms),
and R0 = 9.22 × 10−3 V2 (SNR = 26 dB)

setting a = 0 (τγ = 0) in the first-order AR process defined
in Eq. (17). A spike-train with exactly Type III SCCs has not
been observed in the experimental data presented here.

3.3.3 Partial autocorrelation functions

The autocorrelation function (ACF) at lag k includes the
influence of the variable Xi+k on Xi , and the influence of
all the intervening lags r < k. The direct effect of Xi+k on
Xi is not explicitly known. On the other hand, the partial
autocorrelation (PAC) between two variables in a sequence
Xi and Xi+k removes the linear influence of the intervening
variables Xi+1, . . . , Xi+k−1 (Box and Jenkins 1970). The
PAC as a function of k is the PAC function or PACF. Sec-
tion 2.2.2 in Methods discusses the differences between the
ISI PACF and the ISI ACF with regard to AR and MA pro-
cesses. We estimated the PACF from experimental data and
the modeled spike trains using Eqs. (2), (3), and (4). These
are the same model spike trains used in the calculation of
the ACFs. The PACFs are shown in Fig. 9A–C for the affer-
ents shown in Figs. 6, 7, and 8, respectively. By definition
the first partial autocorrelation φ1, 1 = ρ1. In contrast to the
SCCs where correlation coefficients ρk could be positive or

negative for k ≥ 2, all partial autocorrelations are negative
irrespective of the type of afferent.

3.3.4 Dynamic threshold with a random time-constant

The dynamic threshold has three parameters A, γ , and τ . We
have so far described a stochastic model based on a noisy γ

which is formally equivalent to a noisy A. We now consider
a stochastic dynamic threshold model based on a noisy time-
constant τ . We can transform the adaptive threshold model
with a random spike threshold from the previous section and
Fig. 4 so that the time-constant of the adaptive threshold
filter h (t) is a random variable with mean τ (Fig. 10). From
Eq. (9) the random variate γi − γi−1 which appears in the
time-base can be transformed into the random variate mi

which is the slope of the linearized adaptive threshold (green
line, Fig. 10). From

mi = τi

v − γ + A
, (25)

we obtain

Aτi = τ {γi − γi−1 + A} , (26)
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A B C

D E F

Fig. 8 Type II neuron showing strong bursting activity. Description is
identical to Fig. 6. Top row depicts experimental spike train from a P-
type primary electrosensory afferent. SCCs for this afferent are shown in
Fig. 1B at a different sampling rate (see Methods). Bottom row depicts
results for matched model using colored noise with correlation function

given by Eq. (22) and shown in Fig. 5C. EOD period: 1.04 ms, mean
ISI: 6.04 ms. To generate model results, v = 1.845 V, adaptive thresh-
old parameters: A = 0.19 and τ = 60 ms, AR parameter: a = 0.69
(τγ = 16.89 ms), and R0 = 6.4 × 10−3 V2 (SNR = 27 dB)

and so, E [τi ] = τ . As noted, this is the mean value of
the dynamic threshold filter time-constant. It is immediately
apparent from Eqs. (9) and (26) that the covariance of the
sequence τi (sampled at the ISIs) is the same as the covari-
ance of the ISI sequence up to a scale-factor, and therefore
the serial correlations of τ (ρτ, k , k ≥ 0) are the same as the
serial correlations of the ISIs. Therefore (see Appendix for
details)

ρτ, 0 = 1, (27)

ρτ, k = −Rk−1 −2Rk +Rk+1

2 (R0 −R1)
, k ≥ 1. (28)

The right side of the above equations, Eqs. (27) and (28),
are the same as Eqs. (12) and (13), the expressions for
the SCCs of a spike train generated with a noisy adaptive
threshold. Thus, the random filter time-constants have the
same serial correlation coefficients as the interspike intervals,
ρτ, k = ρk . This is a “pass through” effect where the correla-

tions observed in the time-constant are directly reflected in
the ISI correlations.

In summary, a noisy threshold γ or a noisy filter time-
constant τ can be used to generate spike trains which have
prescribed ISI SCCs. We have generated spike trains using a
noisy threshold and will not duplicate the results for a noisy
time-constant.

4 Discussion

4.1 Experimental observations

All experimentally observedP-type spike-trains fromApterono-
tus leptorhynchusdemonstratednegative correlations between
adjacent ISIs (Figs. 1, 2A). Thus, negative SCCs between
adjacent ISIs may be an obligatory feature of neural cod-
ing, at least in this species. The implications for coding are
discussed further below. A broad experimental observation
is the roughly equal division of spike-trains into units with
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A B C

Fig. 9 Normalized ISI partial autocorrelation functions (PACFs) esti-
mated from afferent ISI sequences (open circles) and models (red line).
A–C depict the PACFs for the three example afferents shown in Figs. 6,
7, and 8, respectively. These PACFs should be compared with the nor-
malized ISI autocorrelation function (ACF) generated for the same data
(Figs. 6F, 7F, and 8F, respectively). A. Type I, non-bursting (ACFs
shown in Fig. 6F). B. Type II, moderately bursting (ACFs shown in

Fig. 7F). C. Type II, strongly bursting (ACFs shown in Fig. 8F). The
first partial correlation coefficient φ1, 1 is reported in each panel (data:
black text, model: red text) and is the same as ρ1 (Eq. 4). The long tails
observed in the PACFs and ACFs suggest that the afferent and model
spike-trains are not anARprocess, butmay be an autoregressivemoving
average (ARMA) process of unknown order

A B

Fig. 10 Dynamic threshold with a stochastic filter time-constant.
A. Geometry of the spiking mechanism. The input is a determinis-
tic piece-wise constant signal (v, here shown to be DC-valued). Two
equivalent spike-generation processes are possible: Case (i) The spike
threshold γ is noisy, while the dynamic threshold filter h(t) has fixed
time-constant τ . This is the same as Fig. 4A. The spike threshold is a
constant term v − γ plus a random perturbation xi generated at t+i−1,
and held constant until the next spike at ti (black). The time-varying
dynamic threshold h(t) is shown in red. Case (ii) The function h(t)
shown in green has a random time-constant with mean τ while the spike

threshold is v−γ , and is constant. Threshold noise xi from Case (i) can
be transformed into a noisy dynamic threshold time-constant τi which is
fixed between spikes, and takes correlated values over successive ISIs.
Spike-times for both cases are identical. B Block diagram illustrating
the feedback from the estimator that generates optimal spike times. The
time-constant τ is a random variable that is constant between spikes,
and is correlated over interspike intervals (ISIs). It is of interest to ask
what is the relationship between the correlation functions in the two
cases. Symbols and additional description as in text

ρ1 > −0.5 (non-bursting or Type I units, Fig. 1A, N = 24)
and units with ρ1 < −0.5 (bursting or Type II units, Fig. 1C,
N = 28). Using a different method of classification, Xu et al.
(1996) reported 31% of 117 units as bursting.

As a function of the firing rate, the first SCC, ρ1 (Fig. 2C)
shows a minimum at a firing rate of about 190 spikes/s with
a V-shaped envelope which appears to set a lower bound on
ρ1 at low and high firing rates. At high firing rates, the mean
ISI is small, and there is limited variability below the mean

ISI because an ISI cannot be less than zero. This possibly
increases ρ1 (toward zero) as firing rate increases, and cre-
ates the effect shown in (Fig. 2C). Supporting this finding
is the inverse relationship between ρ1 and the coefficient of
variation (CV) of ISI (Fig. 2C). Although the correlation is
weak (r = −0.67) a large ρ1 is more likely when the ISI CV
is small. An explanation for the shape of the envelope on the
low-firing rate flank in Fig. 2C is not readily apparent.
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For Type I units ρ2 < 0, whereas for Type II units ρ2 > 0
(Fig. 2C). The former give rise to over-damped SCCs which
remain negative anddiminish to zero,while the latter give rise
to under-damped or oscillatory SCCs which also diminish to
zero. The dependence of ρ2 on ρ1 is linear for the most part
and follows the equation ρ2 = −1.18ρ1 − 0.51 (Fig. 2C).
The limiting sum of SCCs

∑
k≥1 ρk is close to −0.5 irre-

spective of the type of SCC pattern (Fig. 2D) (Ratnam and
Goense 2004). With the exception of two afferent fibers, the
sum of SCCs for the fibers was never smaller than −0.5, i.e.,
it was almost always true that

∑
k≥1 ρk ≥ −0.5. In two cases

the sums were less than the limit (−0.505 and −0.502), pos-
sibly due to estimation error. Although the dominant SCCs
are ρ1 and ρ2, their sum ρ1 + ρ2 is not close to −0.5 (i.e.,
ρ2 �= −ρ1 − 0.5) and deviates, as stated above, with a linear
relationshipwhich followsρ2 = −1.18ρ1−0.51. Thus,more
terms (lags) are needed to bring the sum of SCCs close to
the limiting value, and this results in significant correlations
extending over multiple lags (time-scales). As discussed in
an earlierwork (Ratnam andNelson 2000), long-short (short-
long) ISIs create memory in the spike-train and keep track
of the deviations of successive ISIs from the mean ISI (T1).
These deviations are a series of “credits” and “debits” which
may not balance over adjacent ISIs, but will eventually bal-
ance so that a given observation of k successive ISIs returns
to the mean with tk − t0 ≈ kT1. Such a process will exhibit
long-range dependencies that may not be captured by SCCs.

That the dependencies may extend over multiple ISIs is
confirmed from an analysis of joint dependencies of intervals
extending to high orders (van der Heyden et al. 1998; Ratnam
and Nelson 2000). All 52 units in Apteronotus leptorhynchus
were at least second-order Markov processes, with about
half (N = 24) being fifth-order or higher (Ratnam and Nel-
son 2000). Further, SCCs were not correctly predicted when
only the adjacent ISI dependencies were preserved, i.e., were
considered to be first-order Markov (Poggio and Viernstein
1964; Rodieck 1967; Ratnam and Nelson 2000). Indeed, an
examination of the sequence of SCCs provides no indica-
tion of the extent of memory. For instance, short-duration
correlations do not necessarily imply that ISI dependencies
are limited to fewer adjacent intervals. Long-duration depen-
dencies may be present even when the correlation time is
short (van der Heyden et al. 1998). Conversely, a first-order
Markov process produces a ringing in the serial correlo-
gram (ρk = ρk

1 ) that can continue for ISIs much longer
than two adjacent ISIs (Cox and Lewis 1966; Nakahama
et al. 1972). In fact, for some P-type electrosensory afferent
spike trains, the observed ISIs exhibited SCCs whose magni-
tudes were smaller than the SCCs for the matched first-order
Markov model even though the experimental data were at
least second-order or higher (see Fig. 8, Ratnam and Nelson
2000).

The stochastic process which generates ISIs may be more
complex than a simple autoregressive (AR) or moving aver-
age (MA) process because afferent ISI correlation functions
(Figs. 6F, 7F, and 8F) and partial autocorrelation functions
(Fig. 9) are infinite in duration (see Methods for a distinction
between the two functions, Box and Jenkins (1970)). This
suggests that a more general ARMA process may be respon-
sible for the generation of ISIs. The source of the mix of
AR and MA processes is discussed further below when we
consider the generating model.

4.2 The dynamic thresholdmodel

The experimental observations and dependency analyses
motivated us to ask whether we could develop a stochas-
tic model to reproduce a prescribed sequence of SCCs
ρ1 , ρ2 , . . . , ρk . We adopt a widely used and physiologically
plausiblemodelwith a time-varying, i.e., dynamic, threshold.
This is a simplemodelwithoutmuch complexity, and has few
parameters. The model allows us to probe patterns of SCCs
as a function of these parameters. Further, it tests the extent
to which we can describe experimental data with a simple
model. Dynamic threshold models typically have three com-
ponents: (1) dynamics of membrane voltage v(t) in response
to an input signal, (2) a spike or impulse generator, and (3) a
time-varying dynamic threshold r(t) which is elevated fol-
lowing a spike and subsequently relaxes monotonically. A
spike is firedwhen themembranevoltagemeets the (relaxing)
threshold, thus forming a feedback loop (Fig. 3B). Models
of adaptation with an adaptation current are broadly similar
but instead of altering the threshold directly, they use an out-
ward current to induce refractoriness (see, e.g., Benda et al.
2010; Benda and Herz 2003; Schwalger and Lindner 2013).
In many models, the feedback loop is implicitly defined (as
in conductance-based models), but it may also be explicitly
defined as is done here so that v(t) − r(t) reaches a fixed
spike-initiation threshold. This threshold is usually taken to
be zero, i.e., v(t) = r(t) (Kobayashi et al. 2009), but here we
assume it to be a nonzero value (γ = A/2) following Jones
et al. (2015). This choice does not alter model behavior or
the analyses presented here (see Methods) but has relevance
to optimal coding and is discussed further below.

Models that do not utilize a dynamic threshold or an adap-
tation current are not discussed here because they are outside
the scope of this work. The reader may consult Longtin
et al. (2003), Lindner and Schwalger (2007), Farkhooi et al.
(2009), Urdapilleta (2011) for more details and references to
such models. Most dynamic threshold models that address
negative correlations assume some form of perfect or leaky
integrate-and-fire dynamics for the first two components
listed above (Chacron et al. 2000, 2001, 2004b; Brandman
and Nelson 2002; Benda et al. 2010), and an exponentially
decaying dynamic threshold without spike reset. Noise is
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added to the time-varying threshold or to the input current
and this results in negative serial correlations. Model com-
plexity has been amajor drawback in determining the precise
role of noise in shaping ISI correlations (see, for instance,
observations made in Chacron et al. 2004b; Lindner et al.
2005). Resets, hard refractory periods, sub-threshold dynam-
ics due to synaptic filtering, and sometimes multiple sources
of noise obscure the effects of signal propagation through
the system and obscure signal dependencies. Thus, with few
exceptions (see below), dynamic threshold models and mod-
els with adaptation currents, have been qualitative. They
demonstrate some features of experimentally observed ISI
distributions, and at best correlations between adjacent ISIs
(i.e., ρ1) (Geisler and Goldberg 1966; Chacron et al. 2000,
2003). On the other hand, reduced model complexity can
result in a lack of biophysical plausibility. Thus a judicious
choice of models should expose desired mechanisms while
retaining enough important features of the phenomena.

4.3 Model results

In recent years, deterministic dynamic thresholdmodels with
an exponential kernel have been used to predict spike-times
from cortical and peripheral neurons (Kobayashi et al. 2009;
Fontaine et al. 2014; Jones et al. 2015) (see Gerstner and
Naud 2009, for an early review) and predict peri-stimulus
time histograms (Jones et al. 2015; Johnson et al. 2016) with
good accuracy. Capturing spike-times accurately is perhaps
the first requirement in our analysis, and this gives confidence
that the model may tell us something about ISI correla-
tions. We eliminated sub-threshold dynamics and resets so
that there is only one nonlinear element, the spike genera-
tor (Jones et al. 2015; Johnson et al. 2016). These are not
serious restrictions, and they make the analysis tractable. We
follow the usual practice of representing the dynamic thresh-
old element with an exponential decay with time-constant τ .
The absence of reset implies that the time-varying dynamic
threshold which carries memory is a simple convolution of
the spike train with an exponential kernel Ae−t/τ (Fig. 3B).
We inject noise precisely in one of two places, either to
perturb the spike threshold γ (Fig. 4) or perturb the time-
constant τ (Fig. 10). The two forms of perturbation are
formally equivalent (see Appendix). We linearize the expo-
nential so that we can obtain analytical solutions of SCCs.
This is applicable at asymptotically high spike-rates (Jones
et al. 2015; Johnson et al. 2015) and applies well to P-type
afferent spike trains because of their highbaselinefiring rates,
about 250-300 spikes/s (Bastian 1981; Xu et al. 1996; Rat-
nam and Nelson 2000). To fit ISI and joint-ISI distributions
of individual P-type afferents, the parameters of the dynamic
threshold element h (t) (A and τ ) are obtained from the affer-
ent spike-train (Jones et al. 2015). A single noise parameter,
a, independent of the dynamic threshold, is obtained from

the observed SCCs. These model elements and procedures
allow us to determine the shaping of ISI correlations. The
major results are

1. ISI correlations are determined by the autocorrelation
function, R, of the noise process (Eqs. 12–13).

2. Non-bursting units and bursting units are described by
the same functional relationship between ISI SCCs and
R (Eqs. 12–13).

3. Non-bursting spike trains (with unimodal ISI distri-
bution) are generated by slow noise with a decaying
(positive) correlation function R, which in its simplest
form is given by Eq. (18) (e.g., Fig. 6).

4. Bursting spike trains (with bi-modal ISI distribution) are
generated by fast noise with an oscillating correlation
functionR, which in its simplest form is given byEq. (22)
(e.g., Figs. 7 and 8).

5. The two types of correlation functions are described by
the sign of a single parameter, the parameter a of a first-
order autoregressive process (Eqs. 21 and 17). The AR
parameter is directly related to noise bandwidth, i.e., the
lowor high cut-off frequencies and can be uniquely deter-
mined from the correlation, ρ1, between adjacent ISIs
(Eqs. 20 and24).More robust estimates are obtained from
the ratio ρ2/ρ1. SCCs at subsequent lags are related to a
as terms in a geometric progression (Eqs. 19 and 23).

6. While more complex patterns of SCCs can be produced
by other types of noise correlation functions, only Type I
and Type II SCC patterns are observed in P-type afferent
spike-trains. Type III SCC patterns are mentioned here
because they are commonly reported in modeling studies
and are discussed further below.

7. The expression for ISI SCCs is independent of the adap-
tive threshold parameters (A and τ ), the signal (v), and
the firing threshold (γ ). It is dependent only on the noise
correlation function, including noise power R0.

8. The model fits ISI and joint-ISI distributions.
9. For both non-bursting and bursting units (slow and fast

noise, respectively) the theoretical prediction of the sum
of ISI SCCs is exactly −0.5. The sum of SCCs over all
afferent spike trains is close to this limit: −0.475±0.04.
(N = 52).

10. SNR (10 log10(v
2/R0) is generally larger than 20 dB,

i.e., fluctuations in threshold (noise) are small compared
to the input signal. This is in keeping with the hypothesis
that spike-time jitter is small in comparisonwith themean
ISI.

There are two components to ISI serial correlations as
is apparent from Eq. (9), where the i th ISI is given by
ti − ti−1 = (γi − γi−1 + A) /m. The first component is due
to the difference γi − γi−1 which is coupled to the next
(adjacent) interval ti+1 − ti by the common term γi . This
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term appears with opposing signs in adjacent ISIs and hence
results in a negative correlationwhichdoes not extendbeyond
these ISIs. If the γi are uncorrelated then it can be shown
that the adjacent ISI correlation ρ1 = −0.5 and all other
ρk = 0, for k ≥ 2. Thus, for independent random variables,
this result follows from the property of a differencing opera-
tion and it is not indicative of memory beyond adjacent ISIs.
The second component of ISI correlations is due to long-
range correlations R in the random process γ which extend
beyond adjacent ISIs. These correlations are endogenous,
possibly biophysical in origin, and could be shaped by cod-
ing requirements. The two components to ISI correlations
are made clear by restating Eq. (13) for ρ1 as

ρ1 = −1

2
+ R1 −R2

2 (R0 −R1)
. (29)

Thus, they are separable. For awide-sense stationary process,
R0 > Rk for all k ≥ 1, and so the denominator of the second
term is always positive. Thus, the deviation of ρ1 from −0.5
is determined by the sign of R1 −R2. This term is positive
for non-bursting units (Type I SCCs), and it is negative for
bursting units (Type II SCCs). The singleton case (Type III
SCCs) results because noise is uncorrelated and so the term
vanishes. In this case only the first component is present. For
a Ornstein–Uhlenbeck or Gauss–Markov process, i.e., first-
order AR process with coefficient a > 0,R1 > R2 (Fig. 5A),
and this produces a non-burstingType I pattern.When theAR
parameter is negative, i.e., the coefficient is −a, R1 < R2

(Fig. 5B, C), and this produces a bursting Type II pattern
with a bimodal ISI distribution. Thus, a single parameter (the
sign of the first-order AR parameter) can create the observed
patterns of negatively correlated SCCs. Type III SCCs where
ρ1 = −0.5, and ρk = 0 for k ≥ 2 are trivially generated by
perturbing the spike threshold with uncorrelated white noise,
i.e., by setting a = 0 in the first-order AR process. We have
not observed Type III neurons experimentally although some
spike trains have ρ1 values close to −0.5.

The sign of the a parameter in the AR process determines
the time-scale of noise fluctuations in the spike threshold,
and determines the patterns of SCCs. Recall that τγ =
−T1/ ln (a). For Type I SCCs, the AR process produces
slow noise with noise bandwidth dominated by frequencies
ω < 2πτ−1

γ (i.e., low-pass). For Type II SCCs, the gener-
ating noise is dominated by frequencies ω > 2πτ−1

γ (i.e.,
high-pass). In the latter case, the characteristic ringing of the
correlation function is distinctive,with the degree of damping
being controlled by the value of τγ .

From the above observations, we suggest that the ARMA
process leading to generation of ISIs is the result of two pro-
cesses: 1) An MA component which is due to a differencing
operation. This contributes a value of −1/2 to ρ1, i.e., to the
finite portion of the autocorrelation function (and the infi-

nite tail of the partial autocorrelation function). 2) An AR
component which is due to a feedback loop (Fig. 4). This
contributes a value of −1/2 to φ1, 1, i.e., to the finite portion
of the partial autocorrelation function (and the infinite tail of
the autocorrelation function). In the noise process used here,
ρ1 = −1/2±a/2 (Eqs. 20 and 24 for non-bursting and burst-
ing afferents, respectively), and so the residual contribution
of the autoregressive component to ρ1 is ±a/2. The good-
ness of fit to the experimental data with a single parameter
±a leads us to believe that the underlying ARMA model is
first order in both the AR and MA components.

Farkhooi et al. (2009) reported that in the extrinsic neu-
rons of the mushroom body in the honeybee, the ISI partial
autocorrelation function is zero for all lags k > 1. Thus, the
ISI process is first-order AR, i.e., AR(1). As we remarked
above, we cannot conclude the order of the AR or ARMA
process from our data although we think that it is possibly
ARMA(1, 1). The threshold noise process (whose autocor-
relation and partial autocorrelation are depicted in Fig. 5) is
first-order AR (Figs. 5D–F). However, the threshold noise
correlations (Eq. 18 for Type I, and Eq. 22 for Type II)
influences the ISI correlations according to Eq. 13. This is
illustrated in the closed form expressions for ISI SCCs using
a first-order noise process (Eqs. 19 and 23). The ISI SCC ρk
is a function of k and k − 1. For a first-order noise process
at least, our data suggest that the ISI process is a mix of AR
and MA processes and not a simple AR(1) process.

4.4 Comparison with other adaptationmodels

These results can be directly compared with results from an
earlier study which modeled adaptation currents (Schwalger
et al. 2010). In that study, patterns of SCCs were generated
by a perfect integrate-and-fire neuron under two conditions
: i) a deterministic adaptation current with fast, white Gaus-
sian noise input, and ii) a stochastic adaptation current with
slow, exponentially correlated (channel) noise. A determin-
istic adaptation current with fast noise produced patterns of
SCCs that we report here as Types I and II. These patterns
were characterized by a parameter ϑ which is analogous to
the AR parameter a used here, with Type I pattern (posi-
tive coefficient, a) corresponding to ϑ > 0, and Type II
pattern (negative coefficient, −a) corresponding to ϑ < 0.
A pattern similar to the Type III SCC pattern reported here
resulted when ϑ = 0. This is the same as a = 0 although
we did not observe these neurons experimentally. While we
define Type III SCCs to have only one pattern (ρ1 = −0.5,
and ρk = 0 for k ≥ 2), Schwalger et al. (2010) report that
ρk = 0 when k ≥ 2, but the value of ρ1 is governed by an
additional parameter and could take a range of values, with
ρ1 = −0.5 appearing as a limiting case. Stochastic adapta-
tion currents produced only positive ISI correlations which
we do not observe or model here. In a subsequent report
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Schwalger and Lindner (2013) extended the model to more
general integrate-and-fire models and obtained a relationship
between ISI SCCs and the phase-response curve (PRC). The
patterns of SCCs reported here most likely correspond to
their Type I PRC.

The model presented here for first-order noise processes,
given by Eqs. (17) and (21), does not generate positive cor-
relations. Note that the parameter a in these equations is
bounded such that 0 < a = exp(−T1/τγ ) < 1. Thus, the
AR(1) coefficients a in Eq. (17) and −a in Eq. (21), are
restricted to the open interval (−1, 1) otherwise the noise
process is unstable (i.e., unbounded). Let us say that we
require the first ISI SCC ρ1 > 0, then from Eq. (19) we
must have a > 1 (Type I neuron), and from Eq. (23) we must
have−a < −1 (Type II neuron). Thus, a is outside the stable
range of the AR(1) coefficients and the model cannot gener-
ate positive ISI SCCs. For second-order or higher-order noise
processes AR(p)with p > 1, positive ISI SCCs are possible
if the noise correlation Rk satisfies R0 < 2R1 −R2 (from
Eq. 13). It should be possible to construct arbitrary correla-
tion sequences using Eq. (13) and satisfying the inequality,
to create prescribed sequences of ISI correlations. We have
not explored these ideas.

The SCCs reported here follow a geometric progression
with the filter-pole a being the ratio parameter (see Eqs. 19
and 23). Schwalger et al. (2010) and Schwalger and Lindner
(2013) reported that the patterns of negative correlations fol-
low a geometric progression with the ratio parameter being
ϑ . Similarly, a geometric progression was also reported by
Urdapilleta (2011). Note that a first-order Markov process
also follows a geometric progression with ratio parameter
ρ1 (Cox and Lewis 1966; Nakahama et al. 1972). A geo-
metric progression of SCCs is not surprising given that the
ISI sequence is discrete, and thus, feedback will result in a
(discrete) recurrence relation. For example, all the first-order
AR processes used to predict SCCs have correlation func-
tionswhich are in geometric progression (Eqs. 19, 22). Taken
together with the analysis of partial correlation coefficients,
and as noted above, it is likely that the underlying ARMA
process generating the ISI sequence is low-order. The lim-
iting sum of SCCs reported here (Eq. 14) is exactly −0.5,
whereas Schwalger and Lindner (2013) report a sum that
asymptotically approaches a value that is slightly larger than
−0.5. The average sum of SCCs in our experimental data
(Fig. 2D) is also slightly larger than −0.5 (−0.475± 0.04.),
and this merits further investigation.

In considering the results presented here using a dynami-
cal threshold model, and those from themore general models
using an adaptation current, it appears that the presence of
the feedback loop (the coupling between the membrane volt-
age and the dynamic threshold, see Figs. 3B, 4B, and 10B)
may account for almost all the properties of SCCs if the noise
fluctuation is shaped appropriately. These fluctuations have

the effect of reverberating around the feedback loop, creat-
ing memory and introducing negative correlations extending
over multiple ISIs. However, the source of this noise is moot
because it can appear in the input or the model parameters
(see Eq. 31, where noise can be distributed over the input
v, the threshold decay function r , or the spike threshold γ ).
The dynamic threshold model used here does not suggest a
biophysical mechanism, but we suggest that a noisy thresh-
old is due to an endogenous source of noise which perturbs
the spiking threshold γ or the time-constant τ , i.e., noise
is not passed through the input. This is an assumption, and
input noise will of course shape SCCs. However, several bio-
physical mechanisms can account for endogenous sources
of noise, including probabilistic transitions between confor-
mational states in voltage-gated ion channels (White et al.
1998, 2000; Schneidman et al. 1998;VanRossumet al. 2003;
Fontaine et al. 2014) leading to perturbations in gating char-
acteristics (Benda et al. 2010; Chacron et al. 2007). These
can introduce cumulative refractoriness in firing. It should
be noted that the amount of noise to be added to the thresh-
old is small, generally weaker than 20 dB SNR (see Figs. 6,
7, and 8). That only weak noise may be necessary has been
reported earlier by Schwalger and Lindner (2013), and in a
study on threshold shifts by Fontaine et al. (2014).

While a dynamic threshold model does not explicitly
incorporate biophysics, models with adaptation currents can
be more readily tied to biophysical conductances. An ion
channel that may be a substantial contributor to adapta-
tion currents is the non-inactivating M-current (KCNQ/Kv7
family, Brown and Adams 1980) which is a voltage-gated
potassium channel with slow dynamics (relative to the mean
ISI). This channel may be responsible for spike-timing pre-
cision, and hence a timing-based neural code (see Jones et al.
2015, for a discussion). The possible role of the M-current
and the specific sources of noise have been explored ear-
lier (see Schwalger et al. (2010) above, in relation to types
of SCCs, and Fisch et al. (2012)). Both studies (Schwal-
ger et al. 2010; Fisch et al. 2012) included a modified
conductance-based Traub-Miles model (Traub and Miles
1991; Ermentrout 1998) frequently used in modeling M-
currents. They concluded that negative correlations were a
consequence of a deterministic adaptation current with fast
whiteGaussian noise input rather than a stochastic adaptation
current with slow correlated noise. The current report shows
that at least some of the results with adaptation currents can
be reproduced with a simple dynamic threshold with a noisy
spiking threshold or a noisy decay time-constant. Further,
either slow noise or fast noise can produce negative correla-
tions if injected into the spiking threshold,with the time-scale
of noise fluctuations determining the type of SCC pattern that
is produced (i.e., bursting or non-bursting). In another study
(Benda et al. 2010) the first SCC (ρ1) was compared when
the generating models were a leaky integrate-and-fire (LIF)
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neuron with an adaptation current (LIFAC) or a dynamic
threshold (LIFDT). When the LIFAC and LIFDTmodels are
matched so that the spike-rate and adaptation are about the
same, the ρ1 as a function of spike rate are also similar. This
gives reason to believe that either model of adaptation can
give rise to similar patterns of SCCs, possibly due to the sim-
ple feedback present in themodels. However, amore detailed
biophysical investigation is needed before we can tease apart
the differences at a mechanistic level.

Finally, we note that the model has been formulated as a
dynamic threshold model. However, the model is so mini-
mal that it can be viewed in some instances as an adaptation
current. For example, when we transformed the randomness
in spike threshold γ into a variable time-constant (across
ISIs), we have a model which has a constant spike threshold
but a variable relaxation (outward) current. This transformed
model is more akin to an adaptation current although it is
not stochastic (it is deterministic within an ISI). Thus, for
a simple, abstract model such as the one presented here, it
may not be possible to make a distinction between dynamic
threshold and adaptation current.

4.5 Power spectra and noise-shaping

Negatively correlated spike trains have implications for infor-
mation transmission (Chacron et al. 2004b). These spike
trains have a power spectra P (ω) that rolls off toward DC
(Chacron et al. 2004a; Schwalger and Lindner 2013), effec-
tively reducing low-frequency noise and improving SNR in
the baseband (also referred to as noise-shaping). The con-
nection between DC power P (ω = 0) and the ISI SCCs is
given by Eq. (16) (Cox and Lewis 1966), where it can be seen
that negative correlations have a tendency to reduce noise
at zero-frequency. From the theoretical limit of the sum of
SCCs (−0.5) reported here in Eq. (14), similar to the results
with adaptation currents (Schwalger and Lindner 2013), DC-
power vanishes, thus yielding a perfect DC block allowing
low-frequency signals to be transmitted with very high SNR.
The limiting sum of observed SCCs is only just a little larger
than the optimum sum (−0.5), and this allows some noise
to bleed through at zero-frequency. These results are in line
with the results on power spectra first predicted by Chacron
et al. (2004b) and Chacron et al. (2004a), and more recently
extended to models with adaptation currents (Schwalger and
Lindner 2013).

4.6 Implications for optimal coding

The model presented here sets the spike threshold γ = A/2.
We showed previously that the time-varying dynamic thresh-
old r (t) is an estimator of the input signal v(t), and the
mean-squared estimation error 〈(v(t) − r(t))2〉 is minimized
when the firing threshold is γ = A/2 (Jones et al. 2015; John-

son et al. 2015). The error increases for any other value of
γ , in particular γ = 0 which is the value usually adopted in
the literature. Thus, for optimal timing of spikes the ongoing
estimation error must be bounded below by γ = A/2. When
this bound is reached, the neuron fires a spike and raises the
adaptive threshold variable by A. Viewed in this manner, the
spike generator directly encodes the error and not the sig-
nal (Figs. 3B, 4B). This is much more efficient than directly
encoding the signal (or some filtered version of the signal).
The coding error is equivalent to quantization error in digi-
tal coding. This coding mechanism is analogous to one-bit
delta modulation (Jayant and Noll 1984), but it is asymmet-
ric because the threshold is one-sided. Thus, coding with an
dynamic threshold is analogous to lossy digital coding or
source coding. That is, a neuron performs data compression.

The optimal coding principle is based on a trade-off
between maximizing coding fidelity (reducing estimation
error) and minimizing the long-term firing rate of the neu-
ron (a metabolic energy constraint, see Attwell and Laughlin
(2001), and Johnson et al. (2016); Jones et al. (2015); John-
son et al. (2015)). This formulation is closely related to an
approach from predictive coding in spiking networks which
also balances fidelity against spiking activity in a population
of spiking neurons (Boerlin et al. 2013).

For a constantDC-valued input, the SCCsgenerated by the
model are dependent solely on noise correlations R, and are
independent of all other parameters, including the dynamic
threshold parameters A and τ , the mean value of the thresh-
old γ , and the constant DC-valued input signal v. The model
parameters A and τ are fitted from the baseline (spontaneous)
spike-train through the relationship Aτ = vT1, where v is the
bias input and T1 is the long-term mean ISI. This allows us
to reduce the degrees of freedom to one, to either A or τ , and
then determine the free parameter by optimizing the model
spike train tomatch experimental spike-times (see Jones et al.
2015, for details of the procedure). Thus, the dynamic thresh-
old parameters are not estimated from the observed SCCs.
This fits with our understanding of the dynamic threshold as
an optimal estimator with its parameters being determined by
coding quality and an energy constraint (Jones et al. 2015;
Johnson et al. 2015). When the deterministic parameters are
fixed, a noisy threshold can be generated by estimating the fil-
ter parametera fromρ1 orρ2/ρ1 tomatch the observedSCCs.
This decoupling of dynamic threshold parameters fromSCCs
implies that a correlation function R can be generated from
a specified sequence of SCCs (determined, say experimen-
tally) without reference to the time-varying threshold. Thus,
a family of spike trains with arbitrary mean ISI, ISI and joint-
ISI distributions can be generated, all of which have the same
sequence or pattern of SCCs. Some iteration will be needed
to fit the ISI and joint-ISI distributions from the dynamic
threshold parameters A and τ as is done here, but this is not
too difficult.
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4.7 Further work and conclusion

Themain goal of thisworkwas to show that a simple dynamic
threshold model with few parameters can reproduce known
negative correlations, and further, model experimental data
and provide insight into the origin and patterns of ISI nega-
tive correlations. We proceeded on the assumption that there
is only one experimentally observable quantity: the sequence
of spike times. Based on spike-times, we have shown that the
ISI distribution, the joint-ISI distribution, and SCCs can be
predicted accurately. The approach used here suffers from
several drawbacks. The mean firing rate, or equivalently
mean ISI, is implicitly defined through the model parameters
and hence it does not influence SCCs (the noise correla-
tion function is discretized using ISI lag-number, and not
the absolute value of the ISI). The SCCs obtained with this
approach are thus invariant under firing rate. In reality, we
expect correlations to be small when the spike rate is high
or low, reaching a maximum at some intermediate firing rate
(see Benda et al. 2010). The independence of SCCs from
mean ISI is a result of infinite memory in the model because
the exponential threshold was approximated as a line with
slope m. A second drawback is that the input is a fixed DC-
value and does not incorporate dynamics or noise. It should
be noted that noise in the current model is assumed to per-
turb the spiking threshold; however, it can be exogenous, i.e.,
present in the input v, or present jointly in γ and v. Currently,
there is no way to distinguish between these cases (see the
deterministic firing rule specified in Eq. 7) because noise
can be distributed over γ or over v. Thus, for a noisy DC-
valued input and fixed γ , the results will be the same as for a
noisy γ . Rather than determining the effect of input dynam-
ics on SCCs an alternative and promising line of enquiry is
to determine the role of ISI SCCs, (determined under sponta-
neously active conditions) on processing time-varying inputs
of varying bandwidth, i.e., on signal encoding. As noted ear-
lier (Jones et al. 2015), the bandwidth of the input will affect
the quality of the coding and the extent to which ISI corre-
lations maintain coding fidelity (i.e., the stimulus estimation
error). To determine these effects, the model can be readily
adapted to non-constant inputs by making the input piece-
wise linear between spikes. This approach and the necessary
theory was developed earlier with a deterministic version of
the dynamic threshold model to predict spike-times (Jones
et al. 2015; Johnson et al. 2015, 2016). We hypothesize
that a stochastic extension of the model with weak noise
(added to the spike threshold or decay time-constant) should
not disrupt timing other than introduce timing jitter. This
has been shown in neocortical neurons where spike-timing
is reliable across repeated presentations of rapidly fluctuat-
ing time-varying signals (Mainen and Sejnowski 1995), and
can be accurately modeled using a dynamic threshold (Jones
et al. 2015). Another study, albeit preliminary, showed that

the patterns of negative correlations do not change when
there is a time varying input (Ratnam et al. 2001). While
it is known that negative correlations, and more generally
adaptation currents can reduce variability and stabilize fir-
ing rate in single neurons (see for example, Ratnam and
Nelson 2000; Schwalger and Lindner 2013) and populations
of neurons (Farkhooi et al. 2011, 2013), robust spike-times
(i.e., reduced timing jitter) in response to time-varying sig-
nals may be yet another benefit provided by negative SCCs
in ISIs. Thus, the use of a more exact, i.e., leaky, dynamic
threshold function, the extension to time-varying inputs, and
the determination of the linkages between dynamics of the
input, the threshold, and coding fidelity, are the obvious next
steps.

The simplifieddynamic thresholdmodel usedhere demon-
strates the influence of noise on ISI correlations. We provide
a closed-form expression for SCCs as a function of the noise
correlation R. This is useful for solving the inverse problem
when SCCs are known and the discrete sequence Rk is to be
determined. The forward problem is also readily solved, i.e.,
given a sequenceRk , the SCCs can be evaluated.We illustrate
with a first-orderARmodel, and show that a single-parameter
(the sign of the coefficient in the first-order AR process)
captures the pattern of observed SCCs, and in this respect
it agrees with a detailed dynamical model using adaptation
currents (Schwalger and Lindner 2013). This model can fit
observed spike-times with good accuracy (Kobayashi et al.
2009; Jones et al. 2015), is energy-efficientwhilemaximizing
coding fidelity (Jones et al. 2015; Johnson et al. 2015), and is
computationally inexpensive. Finally, the model provides a
quick and efficient way to generate surrogate data mimicking
negatively correlated spike trains observed in experimental
neurons. Thus, the model can be useful for understanding
timing-based neural codes.
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Appendix

Deterministic and stochastic adaptive threshold
model

In the deterministic adaptive threshold model (Fig. 3A), if
ti−1 and ti , i ≥ 1, are successive spike-times, then the time
evolution of the adaptive threshold r (t) is given by

r (t) = (v − γ + A) exp

(

− t − ti−1

τ

)

, ti−1 < t ≤ ti ,

= (v − γ + A)

(

1 − t − ti−1

τ

)

+ O((t − ti−1)
2).(30)

At t = t+i−1, r
(
t+i−1

) = v − γ + A, and at t = ti , r (ti ) =
v − γ . So,

r (t) − r (ti−1) = −v − γ + A

τ
(t − ti−1), ti−1 < t ≤ ti .

(31)

Let m = (v − γ + A) /τ > 0, so that the slope of the
adapting threshold is −m, then

r (t) − r (ti−1) = −m(t − ti−1), ti−1 < t ≤ ti . (32)

Noting that r (ti ) = v − γ ,

A

m
= (ti − ti−1) , (33)

which is the deterministic firing threshold for a constant, DC-
level signal.

Dynamic threshold with random firing threshold

Throughout this work, we will use the term covariance to
refer to the mean subtracted correlation. If the two random
variables in question are identical, then we will simply refer
to covariance as variance, and correlation as autocorrelation.
If the correlation is normalized by the variance, then we will
refer to it as the correlation coefficient.

We will now provide a stochastic extension to the model
bymaking the spike threshold (γ ) noisywhile leaving all else
unchanged (Fig. 4). Let γ be a discrete wide-sense stationary
processwithmeanE[γ ], discrete autocorrelation functionRk

and power E
[
γ 2

] = R0. The spike threshold with additive
noise assumes the value γi , i ≥ 1 immediately after the

(i − 1)th spike and remains constant in the time interval
ti−1 < t ≤ ti (Fig. 4A) (Chacron et al. 2004a; Gestri et al.
1980). Thus, the i th spike is emitted when the error satisfies
the condition

e (ti ) ≥ γi , for t > ti−1. (34)

Subsequently the adaptive threshold jumps to a higher value
specified by v−γi+A, and the noisy spike threshold assumes
a new value γi+1. From Fig. 4A, proceeding as before

ti − ti−1 = 1

m
{γi − γi−1 + A} . (35)

The mean ISI is therefore E
[
ti − ti−1

] = A/m as in the
deterministic case given by Eq. (7). Thus, the correlation
function for the ISI sequence is

E[(ti − ti−1)
2] = 1

m2 E
[
(γi − γi−1+A) (γi −γi−1 + A)

]
,

= A2

m2 − 2

m2 (E[γi γi−1] − E[γ 2]) , (36)

with variance

Var (ti − ti−1) = − 2

m2

(
E

[
γi γi−1

] − E
[
γ 2

])
. (37)

More generally, for the sum of k ISIs

E[(ti+k − ti )
2] = 1

m2 E[(γi+k − γi + A)2],

= k A2

m2 − 2

m2 (E[γi+k γi ] − E[γ 2]) , (38)

with variance

Var (ti+k − ti ) = − 2

m2 (E
[
γi+k γi

] − E
[
γ 2

]
). (39)

From Eqs. (36) and (38), it can be seen that there are two
terms in each of these ISI correlation functions. The first is
due to the input signal (which gives a mean ISI of A/m),
and the second is due to the discrete-event noise process γ .
From the assumption of wide-sense stationarity, the autocor-
relation function E

[
γi γ j

]
can be written as R

(
ti − t j

)
. The

discrete nature of the correlation function R is made clear in
the following way. Denote the mean of the kth-order interval
by Tk = E[ti+k − ti ], then the mean ISI is T1 (= A/m),
and further Tk = kT1. The random variable γ is generated
once every ISI and thus, the discrete autocorrelation func-
tion R takes values at successive multiples of the mean ISI,
i.e.,R (T1),R (T2), etc., and will be denoted byR1,R2, etc.,
respectively. As noted before, R0 is noise power. That is, we
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can write

R (ti+k − ti ) = R (Tk) = Rk , (40)

and therefore

Var (ti − ti−1) = 2

m2
{R0 −R1} , (41)

Var (ti+k − ti ) = 2

m2
{R0 −Rk} . (42)

The covariance of two ISIs (ti − ti−1) and (ti+k − ti+k−1)

separated by lag k ≥ 1 is

Cov ((ti − ti−1) , (ti+k − ti+k−1))

= 1

m2 E[((γi − γi−1) + A) ((γi+k − γi+k−1) + A)] − A2

m2 ,

1

m2 E[γi γi+k − γi γi+k−1 + γi A − γi−1 γi+k

+γi−1 γi+k−1 − γi−1 A + γi+k A − γi+k−1 A

+A2] − A2

m2 . (43)

This yields

Cov ((ti − ti−1) , (ti+k − ti+k−1))

= 1

m2 E[γi γi+k − γi γi+k−1 − γi−1 γi+k + γi−1 γi+k−1] ,

= − 1

m2
{Rk−1 −2Rk +Rk+1} . (44)

The definition of serial correlation coefficient at lag k is
(Cox and Lewis 1966),

ρk = Cov ((ti − ti−1) , (ti+k − ti+k−1))

Var (ti − ti−1)
1/2 Var (ti+k − ti+k−1)

1/2 . (45)

For a wide-sense stationary process, the covariances are
constant, and the subscript i can be dropped. Introducing
Eqs. (41) and (44) into Eq. (45) yields

ρ0 = 1, (46)

ρk = −Rk−1 −2Rk +Rk+1

2 (R0 −R1)
, k ≥ 1 . (47)

These equations are reproduced in Results as Eqs. (12) and
(13), respectively. The serial-correlation coefficients (SCCs)
given by Eqs. (46) and (47) are independent of the slopem of
the reconstruction filter (the decay rate of the adaptive thresh-
old) and the reconstruction filter gain A. Thus, the observed
correlation structure of the spike-train is determined solely
by the noise statistics of the firing threshold γ .

Dynamic threshold with a random time-constant

We begin with Eqs. (9), (25), and (26), which transform a
random firing threshold into a random time-constant τi that
is held constant between spike-times [ti−1, ti ) with mean
τ = E [τi ] (Fig. 10). It is immediately apparent that the
covariance of the sequence τi (sampled at the ISIs) is the
same as the covariance of the ISI sequence up to a scale-
factor, and therefore the serial correlations of τ (ρτ, k , k ≥ 0)
are the same as the serial correlations of the ISIs. We can
establish this as follows. From Eq. (26)

Var (τi ) = 2τ 2

A2
{R0 −R1} , (48)

and

Cov (τi+k , τi ) = − τ 2

A2
{Rk−1 −2Rk +Rk+1} . k ≥ 1.

(49)

From Eqs. (45), (48) and (49), we can determine the serial
correlation coefficients of the random time-constants to be

ρτ, 0 = 1, (50)

ρτ, k = −Rk−1 −2Rk +Rk+1

2 (R0 −R1)
, k ≥ 1. (51)

These equations are reproduced in Results as Eqs. (27) and
(28), respectively. The right side of the above equations,
Eqs. (50) and (51), are the same as Eqs. (46) and (47), which
are the expressions for the SCCs of a spike train generated
with a noisy adaptive threshold. Thus, the random filter time-
constants have the same serial correlation coefficients as the
interspike intervals, ρτ, k = ρk . This is a “pass through”
effect where the correlations observed in the time-constant
are directly reflected in the ISI correlations.

In summary, a noisy threshold or a noisy dynamic thresh-
old time-constant can generate spike trains with the same
ISIs and SCCs, and either method can be used.

Sum of serial correlation coefficients

Wenow determine the limiting sum of the SCCs over all lags.
Let us first transform ρk as follows by defining

zk = −2ρk (R0 −R1) , k ≥ 1 . (52)

Then, from Eq. (47), zk is a moving-average process such
that

zk = Rk−1 −2Rk +Rk+1 , (53)
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from which it is easy to show that

N∑

k=1

zk = RN+1 −RN +R0 −R1 , (54)

where N is the N th-order interval. We make the assumption
that the process γ is aperiodic and the autocorrelation func-
tionR (N ) → 0 when N → ∞, and so (RN+1 −RN ) → 0.
That is, the process decorrelates over long time-scales. Thus,

lim
N→∞

N∑

k=1

zk = R0 −R1 . (55)

By summing Eq. (52) over all k, and inserting the result
from Eq. (55), the limiting sum of the ISI serial correlation
coefficients for the spike-train is

∞∑

k=1

ρk = −1

2
. (56)
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