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Abstract
Flip graphs are a ubiquitous class of graphs, which encode relations on a set of 
combinatorial objects by elementary, local changes. Skeletons of associahedra, for 
instance, are the graphs induced by quadrilateral flips in triangulations of a convex 
polygon. For some definition of a flip graph, a natural computational problem to 
consider is the flip distance: Given two objects, what is the minimum number of 
flips needed to transform one into the other? We consider flip graphs on orienta-
tions of simple graphs, where flips consist of reversing the direction of some edges. 
More precisely, we consider so-called �-orientations of a graph G, in which every 
vertex v has a specified outdegree �(v) , and a flip consists of reversing all edges of a 
directed cycle. We prove that deciding whether the flip distance between two �-ori-
entations of a planar graph G is at most two is NP-complete. This also holds in the 
special case of perfect matchings, where flips involve alternating cycles. This prob-
lem amounts to finding geodesics on the common base polytope of two partition 
matroids, or, alternatively, on an alcoved polytope. It therefore provides an interest-
ing example of a flip distance question that is computationally intractable despite 
having a natural interpretation as a geodesic on a nicely structured combinatorial 
polytope. We also consider the dual question of the flip distance between graph 
orientations in which every cycle has a specified number of forward edges, and a 
flip is the reversal of all edges in a minimal directed cut. In general, the problem 
remains hard. However, if we restrict to flips that only change sinks into sources, or 
vice-versa, then the problem can be solved in polynomial time. Here we exploit the 
fact that the flip graph is the cover graph of a distributive lattice. This generalizes a 
recent result from Zhang et al. (Acta Math Sin Engl Ser 35(4):569–576, 2019).
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1  Introduction

The term flip is commonly used in combinatorics to refer to an elementary, local, 
reversible operation that transforms one combinatorial object into another. Such flip 
operations naturally yield a flip graph, whose vertices are the considered combinato-
rial objects, and two of them are adjacent if they differ by a single flip. A classical 
example is the flip graph of triangulations of a convex polygon [46, 57]; see Fig. 1. 
The vertex set of this graph are all triangulations of the polygon, and two triangula-
tions are adjacent if one can be obtained from the other by replacing the diagonal 
of a quadrilateral formed by two triangles by the other diagonal. Similar flip graphs 
have also been investigated for triangulations of general point sets in the plane [16], 
triangulations of topological surfaces [41], and planar graphs [6, 10]. The flip dis-
tance between two combinatorial objects is the minimum number of flips needed to 
transform one into the other. It is known that computing the flip distance between 
two triangulations of a simple polygon [4] or of a point set [37] is NP-hard. The 
latter is known to be fixed-parameter tractable [33]. On the other hand, the NP-hard-
ness of computing the flip distance between two triangulations of a convex polygon 
is a well-known open question [12, 13, 17, 34, 38, 54]. Flip graphs involving other 
geometric configurations have also been studied, such as flip graphs of non-crossing 
perfect matchings of a point set in the plane, where flips are with respect to alternat-
ing 4-cycles [11], or alternating cycles of arbitrary length [29]. Other flip graphs 
include the flip graph on plane spanning trees [2], the flip graph of non-crossing 
partitions of a point set or dissections of a polygon [28], the mutation graph of sim-
ple pseudoline arrangements [53], the Eulerian tour graph of an Eulerian graph [59], 
and many others. There is also a vast collection of interesting flip graphs for non-
geometric objects, such as bitstrings, permutations, combinations, and partitions 
[22].

In essence, a flip graph provides the considered family of combinatorial objects 
with an underlying structure that reveals interesting properties about the objects. It 
can also be a useful tool for proving that a property holds for all objects, by proving 
that one particularly nice object has the property, and that the property is preserved 

Fig. 1   The flip graph of triangulations of a convex polygon
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under flips. Flip graphs are also an essential tool for solving fundamental algorith-
mic tasks such as random and exhaustive generation, see e.g. [3, 7, 50].

The focus of the present paper is on flip graphs for orientations of graphs sat-
isfying some constraints. First, we consider so-called �-orientations, in which the 
outdegree of every vertex is specified by a function � , and the flip operation consists 
of reversing the orientation of all edges in a directed cycle. We study the complexity 
of computing the flip distance between two such orientations. An interesting special 
case of �-orientations corresponds to perfect matchings in bipartite graphs, where 
flips involve alternating cycles. We also consider the dual notion of c-orientations, 
in which the number of forward edges along each cycle is specified by a function c. 
Here a flip consists of reversing all edges in a directed cut. We also analyze the com-
putational complexity of the flip distance problem in c-orientations.

There are several deep connections between flip graphs and polytopes. Spe-
cifically, many interesting flip graphs arise as the (1-)skeleton of a polytope. For 
instance, flip graphs of triangulations of a convex polygon are skeletons of associa-
hedra [15], and flip graphs of regular triangulations of a point set in the plane are 
skeletons of secondary polytopes (see [16, Chapter 5]). Associahedra are general-
ized by quotientopes [48], whose skeletons yield flip graphs on rectangulations [14], 
bitstrings, permutations, and other combinatorial objects. Moreover, flip graphs of 
acyclic orientations or strongly connected orientations of a graph are skeletons of 
graphical and co-graphical zonotopes, respectively (see [45, Sect. 2]). Similarly, as 
we show below, flip graphs on �-orientations are skeletons of matroid intersection 
polytopes. We also consider vertex flips in c-orientations, inducing flip graphs that 
are distributive lattices and in particular subgraphs of skeletons of certain distribu-
tive polytopes. These polytopes specialize to flip polytopes of planar �-orientations, 
are generalized by the polytope of tensions of a digraph, and form part of the family 
of alcoved polytopes (see [21]).

In the next section, we give the precise statements of the computational prob-
lems we consider, connections with previous work, and the statements of our main 
results. In Sect. 4, we give the proof of our first main result, showing that computing 
the flip distance between �-orientations and between perfect matchings is NP-hard 
even for planar graphs. Section 5 presents the proof of our second main result, where 
we give a polynomial time algorithm to compute the vertex flip distance between 
c-orientations. Finally, in Sect.  6 we show that computing the distance between 
c-orientations, when double vertex flips are also allowed, is NP-hard.

2 � Problems and Main Results

2.1 � Flip Distance Between ̨ ‑Orientations

Given a graph G and some � ∶ V(G) → ℕ0 , an �-orientation of G is an orientation 
of the edges of G in which every vertex v has outdegree �(v) . An example for a 
graph and two �-orientations for this graph is given in Fig. 2. A flip of a directed 
cycle C in some �-orientation X consists of the reversal of the orientation of all 
edges of C, as shown in the figure. Edges with distinct orientations in two given 
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�-orientations X and Y induce an Eulerian subdigraph of both X and Y. They can 
therefore be partitioned into an edge-disjoint union of cycles in G which are 
directed in both X and Y. Hence the reversal of each such cycle in X gives rise to 
a flip sequence transforming X into Y and vice versa. We may thus define the flip 
distance between two �-orientations X and Y to be the minimum number of cycles 
in a flip sequence transforming X into Y. We are interested in the computational 
complexity of determining the flip distance between two given �-orientations.

Problem 1  Given a graph G, some � ∶ V(G) → ℕ0 , a pair X, Y of �-orientations of 
G and an integer k ≥ 0 , decide whether the flip distance between X and Y is at most 
k.

The crucial difficulty of this problem is that a shortest flip sequence transform-
ing X into Y may flip edges that are oriented the same in X and Y an even number 
of times, to reach Y with fewer flips compared to only flipping edges that are ori-
ented differently in X and Y; see the example in Fig. 3. This motivates the follow-
ing variant of the previous problem:
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Fig. 2   Two �-orientations of a graph and a flip between them, where the values of � are depicted on the 
vertices
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Fig. 3   An �-orientation X of a graph. The �-orientation Y obtained by flipping the four directed facial 
cycles C1,… ,C4 can be reached with fewer flips by flipping only the three directed facial cycles 
D1,D2,D3 in this order
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Problem  2  Given G, �,X, Y , k as in Problem  1, decide whether the flip distance 
between X and Y is at most k, where we only allow flipping edges that are oriented 
differently in X and Y.

2.2 � From ̨ ‑Orientations to Perfect Matchings

The flexibility in choosing a function � for a set of �-orientations on a graph allows 
us to capture numerous relevant combinatorial structures, some of which are listed 
below:

•	 domino and lozenge tilings of a plane region [52, 58],
•	 planar spanning trees [26],
•	 (planar) bipartite perfect matchings [39],
•	 (planar) bipartite d-factors [18, 47],
•	 Schnyder woods of a planar triangulation [8],
•	 Eulerian orientations of a (planar) graph [18],
•	 k-fractional orientations of a planar graph with specified outdegrees[5],
•	 contact representations of planar graphs with homothetic triangles, rectangles, 

and k-gons[19, 23, 24, 27].

In the following, we focus on perfect matchings of bipartite graphs. Consider any 
bipartite graph G with bipartition (V1,V2) equipped with

With this definition, in each �-orientation of G, the edges directed from V1 to V2 
form a perfect matching. This is illustrated in Fig.  4. Conversely, given a perfect 
matching M of G, orienting all edges of M from V1 to V2 and all the other edges from 
V2 to V1 yields an �-orientation of the above type. Furthermore, the directed cycles 
in any �-orientation of G correspond to the alternating cycles in the associated per-
fect matching. Flipping an alternating cycle in a perfect matching corresponds to 
exchanging matching and non-matching edges. An example of the flip graph of 

� ∶ V(G) → ℕ0, �(x) ∶=

{
1 if x ∈ V1,

dG(x) − 1 if x ∈ V2.
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Fig. 4   An �-orientation of a bipartite graph and the corresponding perfect matching
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perfect matchings of a graph is given in Fig. 5. In this special case, Problem 1 boils 
down to:

Problem 3  Given a bipartite graph G, a pair X, Y of perfect matchings in G and an 
integer k ≥ 0 , decide whether the flip distance between X and Y is at most k.

The example from Fig. 3 can be easily modified to show that when transform-
ing X into Y using the fewest number of flips, we may have to flip alternating cycles 
that are not in the symmetric difference of X and Y; see the example in Fig. 6. If we 

Fig. 5   The flip graph of perfect matchings of a graph. The solid edges indicate flips along facial cycles, 
and the dashed edges indicate flips along non-facial cycles
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restrict the flips to only use cycles in the symmetric difference of X and Y, then the 
problem of finding the flip distance becomes trivial, as the symmetric difference is 
a collection of disjoint cycles, and each of them has to be flipped, so Problem 2 is 
trivial for perfect matchings.

2.3 � Flip Graphs and Matroid Intersection Polytopes

We proceed to give a geometric interpretation of the flip distance between �-orienta-
tions as the distance in the skeleton of a 0/1-polytope.

Recall that a matroid is an abstract simplicial complex (E, I) , where I ⊆ 2E satis-
fies the independent set augmentation property. The elements of I  are called inde-
pendent sets. A base of the matroid is an inclusionwise maximal independent set.

It is well-known that perfect matchings in a bipartite graph G = (V1 ∪ V2,E) are 
common bases of two partition matroids (E, I1) and (E, I2) , in which a set of edges 
is independent if no two share an endpoint in V1 , or, respectively, in V2.

Similarly, �-orientations can be defined as common bases of two partition 
matroids. In this case, every edge of the graph G is replaced by a pair of parallel 
arcs, one for each possible orientation of the edge. One matroid ensures that in a 
basis, for every edge exactly one orientation is chosen. The second matroid encodes 
the constraint that in a basis, each vertex v has exactly �(v) outgoing arcs.

The common base polytope of two matroids is a 0/1-polytope obtained as the con-
vex hull of the characteristic vectors of the common bases. Adjacency of two ver-
tices of this polytope has been characterized by Frank and Tardos [25]. A shorter 
proof was given by Iwata [30]. We briefly recall their result in the next theorem. To 
state the theorem, consider a matroid M = (E, I) , a base B ∈ I  , and a subset F ⊆ E . 
The exchangeability graph G(B, F) of M is a bipartite graph with B ⧵ F and F ⧵ B as 
vertex bipartition, and edge set {ij ∣ B ⧵ {i} ∪ {j} is a basis} . This definition and the 
theorem are illustrated in Fig. 7 for the two partition matroids whose common bases 
are perfect matchings of a graph.

Theorem 1  ([25, 30]) For two matroids M+ = (E, I+) and M− = (E, I−) , two com-
mon bases A,B ∈ I

+ ∩ I
− are adjacent on the common base polytope if and only if 

all the following conditions hold: 

C1 C2 C3 C4

D1

D2

D3

Fig. 6   A perfect matching X in a graph. The perfect matching Y obtained by flipping the four alternating 
facial cycles C1,… ,C4 can be reached with fewer flips by flipping only the three alternating facial cycles 
D1,D2,D3 in this order
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	 (i)	 the exchangeability graph G(A, B) of M+ has a unique perfect matching P+,
	 (ii)	 the exchangeability graph G(B, A) of M− has a unique perfect matching P−,
	 (iii)	 P+ ∪ P− is a single cycle.

From this theorem we can conclude that the flip graphs we consider on perfect 
matchings and �-orientations are precisely the skeletons of the corresponding poly-
topes of common bases.

It is interesting to compare Problems 1 and 3 with the analogous problems for 
other families of matroid polytopes. For instance, it is known that for two bases A, B 
of a matroid, the exchangeability graph G(A, B) has a perfect matching [9]. Hence 
A can be transformed into B by performing |AΔB|∕2 exchanges of elements (where 
AΔB is the symmetric difference of A and B), which is also the distance in the skel-
eton of the base polytope of the matroid. On the other hand, the problem of com-
puting the flip distance between two triangulations of a convex polygon amounts to 
computing distances in skeletons of associahedra, which are known to be polyma-
troids (see [1] and references therein). This problem is neither known to be in ¶ nor 
known to be NP-hard. Also note that for other families of combinatorial polytopes, 
testing adjacency is already intractable. This is the case for instance for the polytope 
of the Traveling Salesman Problem (TSP) [42], whose skeleton is known to have 
diameter at most 4 [51]. On the other hand, the corresponding polytope is known to 
be the common base polytope of three matroids.

Another important class of combinatorial polytopes are alcoved polytopes, see 
[36]. It is known that the flip graphs of planar �-orientations are skeletons of alcoved 
polytopes, see [21]. Thus, by our results below, flip distances in this class are also 
NP-hard to compute.

2.4 � Hardness of Flip Distance Between Perfect Matchings and ̨ ‑Orientations

We prove that Problem 3 is NP-complete, even for 2-connected bipartite subcubic 
planar graphs and k = 2 . This clearly implies that Problem 1 is NP-complete as well.

A = {1, 3, 5, 7, 8} B = {2, 4, 6, 7, 8}

3

1

65

4

2
A \B B \A

G(A,B)
G(B,A)

Fig. 7   Two common bases A and B (left and middle) of the matroids M+ and M− , where M+ and M− have 
as independent sets all subsets of edges of the graph where no two share an endpoint in the set of circled 
vertices, or the set of squared vertices, respectively. The right hand side shows the exchangeability graphs 
G(A, B) of M+ (solid edges) and G(B, A) of M− (dashed edges). As the conditions of Theorem 1 are met, 
the two bases are adjacent in the common base polytope, and adjacent in the flip graph shown in Fig. 5
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Theorem 2  Given a 2-connected bipartite subcubic planar graph G and a pair X, Y 
of perfect matchings in G, deciding whether the flip distance between X and Y is at 
most two is NP-complete.

As direct consequences of the proof of Theorem 2 we get:

Corollary 1  Unless � = �� , deciding whether the flip distance between two perfect 
matchings is at most k is not fixed-parameter tractable with respect to parameter k.

Corollary 2  Unless � = �� , the flip distance between two perfect matchings is not 
approximable within a multiplicative factor 3∕2 − � in polynomial time, for any 
𝜖 > 0.

We also prove that Problem  2 is NP-complete, even for 4-regular graphs and 
k = 2.

Theorem  3  Given a 4-regular graph G and a pair X,  Y of �-orientations of G, 
deciding whether the flip distance between X and Y is at most two is NP-complete. 
Moreover, the problem remains NP-complete if we only allow flipping edges that are 
oriented differently in X and Y

The proofs of Theorems 2 and 3 are presented in Sect. 4.

2.5 � From ̨ ‑Orientations in Planar Graphs to c‑Orientations

In what follows, we generalize the problem, via planar duality, to flip distances in 
so-called c-orientations.

Consider an arbitrary 2-connected plane graph G and its planar dual G∗ . Then 
for any orientation D of the edges of G, the directed dual D∗ of D is obtained by 
orienting any dual edge forward if it crosses a left-to-right arc in D in a simultane-
ous plane embedding of G and G∗ , and backward otherwise; see Fig. 8. Edge sets 
of directed cycles in D correspond to edge sets of minimal directed cuts in D∗ and 
vice-versa. Hence D is acyclic (respectively, strongly connected) if and only if D∗ is 
strongly connected (respectively, acyclic). A directed vertex cut is a cut consisting 

Fig. 8   Duality between flips in �-orientations (solid edges) and in c-orientations (dashed edges)
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of all edges incident to a sink or a source vertex. Directed facial cycles in D are in 
bijection with the directed vertex cuts in D∗ , and vice versa. The unbounded face in 
the plane embedding of D can be chosen such that it corresponds to a fixed vertex ⊤ 
in D∗.

Let D be an �-orientation of G. Given a minimal cut in D separating U ⊆ V(D) 
from U ∶= V(D) ⧵ U , we denote by �+(U) the edges pointing from U to U in D. We 
also let d+

D
(v) denote the outdegree of vertex v in D. We have

which only depends on � and G. Consequently, the set of orientations of G∗ which 
are directed duals of �-orientations of G can be characterized by the property that 
for every cycle C in G∗ , the number of edges in clockwise direction is fixed by a 
certain value c(C) independent of the orientation. The flip operation between �-ori-
entations of D consists of the reversal of a directed cycle. In the corresponding set of 
dual orientations of D∗ , this translates to the reversal of the orientations of the edges 
in a minimal directed cut, as shown on Fig. 8.

The same notion has been investigated more generally without planarity condi-
tions under the name of c-orientations by Propp [47] and Knauer [31]. Given a graph 
G, we can fix an arbitrary direction of traversal for each cycle C. Given a graph and 
an assignment c(C) ∈ ℕ0 to each cycle in G, one may define a c-orientation of G to 
be an orientation having exactly c(C) edges in forward direction for every cycle C 
in G. Note that it is sufficient to define the function c on a cycle basis of G, which 
consists of no more than |E(G)| cycles. The flip operation on the set Rc of such c-ori-
entations of a graph is defined as the reversal of all edges in a minimal directed cut. 
It is not difficult to see that flips make the set of c-orientations of a graph connected 
(this will be noted in Sect. 5).

From the duality between planar �-orientations and planar c-orientations, deter-
mining flip distances between �-orientations of 2-connected planar graphs reduces 
to determining flip distances between the dual c-orientations. Note that planar duals 
of bipartite graphs are exactly the Eulerian planar graphs. Theorem  2 therefore 
directly yields:

Corollary 3  Given an Eulerian planar graph G and a pair X, Y of c-orientations of 
G, deciding whether the flip distance between X and Y is at most two is NP-complete.

2.6 � c‑Orientations and Distributive Lattices

A more local operation consists of flipping only directed vertex cuts, induced by 
sources and sinks, excluding a fixed vertex ⊤ . We will refer to this special case as a 
vertex flip. Specifically, given a pair of c-orientations X, Y of a graph G with a fixed 
vertex ⊤ , we aim to transform X into Y using only vertex flips at vertices distinct 
from ⊤.

A c-orientation X of G might contain a cycle C in G which is directed in X. 
According to the definition of a c-orientation, this means that C keeps the same 

|�+(U)| = ∑
v∈U

d+
D
(v) − |E(G[U])| = ∑

v∈U

�(v) − |E(G[U])|,
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orientation in every c-orientation of G. Consequently, any (minimal) directed cut in 
a c-orientation of G is disjoint from E(C). Contracting the cycle C in G, we end up 
with a smaller graph G′ containing the same (minimal) directed cuts, such that the 
c-orientations of G are determined by their corresponding orientations on G′ . We 
can therefore safely assume that the c-orientations that we consider are all acyclic. 
Similarly, G will be assumed to be connected.

Problem 4  Given a connected graph G with a fixed vertex ⊤ and a pair X, Y of acy-
clic c-orientations, what is the length of a shortest vertex flip sequence transforming 
X into Y?

We should convince ourselves that under the assumptions made above, every pair 
of c-orientations is reachable from each other by vertex flips. This property is pro-
vided in a much stronger way by a distributive lattice structure on the set Rc ; see 
Fig. 9. The next theorem is a special case of Theorem  1 in Propp [47] where the 
c-orientations are acyclic.

Theorem 4  ([31, 47]) Let G be a graph with fixed vertex ⊤ and Rc a set of acyclic 
c-orientations of G. Then the partial order ≤c on Rc in which Y covers X if and only 
if Y can be obtained from X by flipping a source defines a distributive lattice on Rc.

Hence Problem 4 consists of finding shortest paths in the cover graph of a dis-
tributive lattice, where the size of the lattice can be exponential in the size of the 
input G.

2.7 � Every Distributive Lattice is a Lattice of c‑Orientations

We next point out that every distributive lattice is isomorphic to the distributive lat-
tice induced by a set of c-orientations of a graph. This relationship was described by 
Knauer [32].

In order to represent a given distributive lattice L by an isomorphic lattice of 
c-orientations, we need to construct a corresponding digraph D(L). For this purpose, 
we shortly recall a classical result from lattice theory, Birkhoff’s Theorem (see [17]).

For any distributive lattice L, J(L) is the subposet of L induced by the set of join-
irreducible elements, these are the elements of L covering exactly one element. 
On the other hand, given any poset P we may look at the distributive lattice O(P) 
formed by the downsets of P ordered by inclusion. Birkhoff’s Theorem in our setting 
asserts that those two operations are inverse in the sense that P ≅ J(O(P)) for any 
finite poset P and O(J(L)) ≅ L for any finite distributive lattice.

The idea is to define a digraph D(L) whose vertex set consists of the elements of 
J(L) with an additional vertex ⊤ . The digraph is obtained from the natural upward-
orientation of J(L) plus additional arcs from all the sinks and sources to ⊤ . Let G(L) 
be the underlying graph of D(L), and for every cycle C of G(L), fix c(C) to be the 
number of forward-edges on c in the orientation D(L). Let Dc be the set of c-orien-
tations of G(L). Fix ⊤ as the unique non-flippable vertex. We now define Lc(D(L)) 
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as the distributive lattice induced on D according to Theorem 4. An example of this 
construction is provided in Fig. 10.

The following theorem is an easy consequence of Birkhoff’s Theorem.

Theorem 5  ([32]) Let L be any distributive lattice and D(L) be the corresponding 
digraph as defined above. Then L ≅ Lc(D(L)).

Theorem 9 below gives a natural geometric embedding of the lattice L depend-
ing on the digraph D(L). This embedding is such that all values zX(x) are 0 or 1, and 

Fig. 9   The distributive lattice induced by vertex flips in c-orientations. The reference orientation at the 
bottom is the directed dual D∗ of the orientation D of the graph G used in Figs. 4 and  5, where some 
parallel arcs incident with ⊤ are grouped together for simplicity. The numbers depicted at the vertices 
indicate the number of times that each vertex is flipped with respect to the reference orientation
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the vectors zX(.) are exactly the characteristic vectors of the downsets of J(L) . The 
convex hull of those vectors is known as the order polytope of J(L) [56], which is a 
particular case of the above-mentioned alcoved polytopes. The problem of comput-
ing vertex flip distances between elements of L encoded by c-orientations of G(L) 
therefore boils down to computing the distance between two downsets of J(L) in 
their inclusion lattice, which is a simple special case of Problem 4.

2.8 � Facial Flips in Planar Graphs

When we consider Problem 4 on planar graphs, restricting to vertex flips and con-
sidering the dual plane graph amounts to considering only flips of directed facial 
cycles, excluding the outer face whose dual vertex is ⊤ . We refer to these as facial 
flips. Felsner [18] considered distributive lattices induced by facial flips. The follow-
ing computational problem is a special case of Problem 4.

Problem  5  Given a 2-connected plane graph G and a pair X,  Y of strongly con-
nected �-orientations, what is the length of a shortest facial flip sequence transform-
ing X into Y?

Zhang et al. [60] recently provided a closed formula for this flip distance, which 
can be turned into a polynomial-time algorithm. We prove the analogous stronger 
statement for Problem 4.

Theorem 6  There is an algorithm that, given a graph G with a fixed vertex ⊤ and 
a pair X, Y of c-orientations of G, outputs a shortest vertex flip sequence between X 
and Y, and runs in time O(m3) where m is the number of edges.

In the planar case, this directly translates to a polynomial-time algorithm for 
Problem 5. The proof of Theorem 6 is presented in Sect. 5. In [20], the distributive 
lattice structure on c-orientations is generalized to so-called Δ-bonds, also known 

Fig. 10   A distributive lattice 
L represented by its Hasse 
diagram (left), the correspond-
ing subposet of join-irreducible 
elements J(L) (middle), and the 
digraph D(L) associated with 
the lattice (right)

L J (L) D(L)

�
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as tensions. We believe that our proof of Theorem  6 can be generalized to these 
objects.

2.9 � Flip Distance with Larger Cut Sets

While computing the cut flip distance between c-orientations is an NP-hard problem 
in general (Theorem 2), there is a polynomial-time-algorithm for computing the dis-
tance when only using vertex flips (Theorem 6). It is natural to ask for a threshold 
between the hard and easy cases of flip distance problems. Our hardness reduction 
in Sect. 4 involves very long directed cycles, which correspond to flips of directed 
cuts in the dual c-orientations with cut sets of large size. Consequently, one may 
hope that the problem gets easier when restricting the sizes of the cut sets involved 
in a flip sequence. Our last result destroys this hope:

Theorem 7  Let X, Y be c-orientations of a connected graph G with fixed vertex ⊤ . 
It is NP-hard to determine the length of a shortest cut flip sequence transforming X 
into Y, which consists only of minimal directed cuts with interiors of order at most 
two.

We will present the proof of Theorem 7 in Sect. 6.

3 � Preliminaries

In this section we recall some standard terminology concerning digraphs and posets 
that will be used repeatedly in the paper.

3.1 � Cuts and Cut Sets

Given a directed graph D and a subset U ⊆ V(D) of vertices, we denote by �(U) 
the set of all arcs in E(D) having one end in U and the other in U ∶= V(D) ⧵ U . By 
�
+(U) , we denote the set of all arcs in E(D) directed from U to U . If �(U) = �

+(U) , 
we call S = �(U) a directed cut or dicut induced by U, and U is referred to as a cut 
set of S. In the case that D is weakly connected, the cut set is uniquely determined by 
the dicut.

3.2 � Posets and Lattices

A partially ordered set, or poset for short, is a pair (P,≺) , where P is a set and ≺ is 
a reflexive, antisymmetric and transitive binary relation on P. Posets can be rep-
resented more compactly by their minimal comparabilities: We say that x ≺ y is a 
cover relation, or y covers x, if there is no z in the poset with x ≺ z ≺ y . This defines 
the cover graph of P, which has the elements of P as vertices, and an edge for every 
cover relation. The Hasse diagram of P is a drawing of the cover graph in the plane, 
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where vertices are represented by distinct points and for every cover relation x ≺ y , 
the edge between x and y is drawn as a straight line going upwards from x to y.

The downset of an element y in P is the set of all x with x ≺ y . A poset P is called 
a lattice, if for any two elements x and y in P there is a unique smallest element z 
such that x ≺ z and y ≺ z , and a unique largest element z such that z ≺ x and z ≺ y . 
These elements are called the join and the meet of x and y, respectively. A lattice is 
called distributive, if the join and meet operations distribute over each other.

4 � Flip Distance Between Perfect Matchings and Between ̨
‑Orientations

The proof of Theorem 2 is by reduction from the following NP-complete problem.

Theorem 8  (Plesńik [44]) Deciding directed Hamiltonicity of orientations of cubic 
planar graphs is NP-complete.

The above problem remains NP-complete if we additionally assume 2-connectiv-
ity of the cubic graph and that the orientation does not have sinks or sources (other-
wise, there is no directed Hamiltonian cycle).

Proof of Theorem 2  As each flip sequence of length at most two can be used as a 
polynomially verifiable certificate, the problem is clearly in NP.

We now provide a reduction of the decision problem in Theorem 8 to Problem 3. 
So suppose we are given an orientation D of a 2-connected cubic planar graph with-
out sinks and sources, and assume without loss of generality that |V(D)| ≥ 3 . Given 
D, we define an undirected graph G = G(D) as follows; see Fig. 11: For each vertex 
v ∈ V(D) we create a vertex xv in G, and for each arc e ∈ E(D) we create a pair of 
vertices x+

e
, x−

e
 in G. The edges of G are defined as follows: For each arc e ∈ E(D) , 

we connect x+
e
 and x−

e
 with an edge in G. Furthermore, we denote by V1 and V2 the 

vertices of D with outdegree 1 or 2, respectively. For each v ∈ V1 , if e, f ∈ E(D) are 
the two incoming arcs at v and g is the outgoing arc, then we add the edges x+

e
xv , 

x+
f
xv , x+e x

−
g
 , and x+

f
x−
g
 to G. Similarly, for each v ∈ V2 , if e, f ∈ E(D) are the two out-

going arcs at v and g is the incoming arc, then we add the edges x−
e
xv , x−f xv , x

−
e
x+
g
 , 

and x−
f
x+
g
 to G. We refer to the 4-cycles in G formed by these edges as C4-gadgets. 

Note that G is subcubic, planar, 2-connected, and bipartite. Specifically, the biparti-
tion is given by {xv ∣ v ∈ V1} ∪ {x−

e
∣ e ∈ E(D)} and {xv ∣ v ∈ V2} ∪ {x+

e
∣ e ∈ E(D)}

.
We construct a pair of perfect matchings X, Y on G as follows. The first matching 

X is defined by fixing a particular perfect matching on each C4-gadget, and the sec-
ond matching Y is obtained from X by flipping all cycles formed by the C4-gadgets; 
see Fig. 11. We claim that X and Y have flip distance at most two in G if and only if 
D has a directed Hamiltonian cycle. From this the theorem follows.

First, assume there is a directed Hamiltonian cycle H in D. We define a pair of 
cycles C1,C2 in G, where C1 and C2 both contain all the edges {x+

e
x−
e
∣ e ∈ E(H)} , 



131

1 3

Algorithmica (2021) 83:116–143	

plus additional edges defined as follows. For each vertex v ∈ V(D) , consider the cor-
responding C4-gadget in G with the two incident edges corresponding to the edges 
incident with v on H. The endpoints of those edges on the gadget divide it into two 
alternating paths in X, one with matching edges at both ends and one with non-
matching edges at both ends. We add the edges on those two types of paths to C1 or 
C2 , respectively. Note that C1 is an alternating cycle in X. Moreover, after flipping C1 , 
the cycle C2 is alternating, and flipping C2 yields Y, as each edge in a C4-gadget gets 
flipped once while the remaining edges are flipped an even number of times and thus 
remain unchanged.

For the reverse implication, assume that X and Y are transformable into each 
other by flipping at most two alternating cycles. As the symmetric difference XΔY  
contains at least three disjoint cycles (recall the assumption |V(D)| ≥ 3 ), exactly 
two cycles C1,C2 are flipped to transform X into Y, and neither C1 nor C2 is one 
of the 4-cycles formed by the C4-gadgets. As the edges outside the gadgets remain 
unchanged, they are covered by both C1,C2 or by neither of them. We claim that 
H ∶= {e ∈ E(D) ∣ x+

e
x−
e
∈ E(C1)} is the arc set of a directed Hamiltonian cycle in D. 

Since up to isomorphism, H is obtained from E(C1) by contraction of the C4-gadg-
ets, H forms a cycle in D (here we need that D is cubic). If the cycle H is not a 

v ∈ V1

e f

g

v ∈ V2

e f

g

x+e x+f

x+g

x−e x−f

x−g

xv

x+e x+f

x+g

xv
x−e x−f

x−g

Fig. 11   C4-gadgets to construct the undirected graph G = G(D) (right) from the digraph D (left) in the 
proof of Theorem 2. The edges of the matchings X and Y in G are indicated by bold solid and dashed 
lines, respectively
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directed cycle in D, there would be some v ∈ V1 with two incoming incident edges 
from H. However, in this case, the path in the corresponding C4-gadget contained in 
C1 consists of two edges, one of which is not in X, contradicting that C1 is an alter-
nating cycle in X. Finally, the directed cycle H has to be spanning. Indeed, if there 
is a C4-gadget not traversed by C1 , then C2 would be equal to the 4-cycle in the cor-
responding gadget, a contradiction. 	� ◻

Proof of Theorem 3  We use the following hardness result of Peroche [43]. Given a 
digraph D, where each vertex has indegree and outdegree equal to 2, it is NP-com-
plete to decide if E(D) is the union of two directed Hamiltonian cycles. Given such a 
digraph D, let �⃖�D be the digraph obtained from D by reversing the direction of every 
arc. We regard D and �⃖�D as �-orientations X and Y of the same underlying graph G, 
where �(v) = 2 for all v ∈ V(G) . The theorem follows by observing that the flip dis-
tance between X and Y is at most 2 if and only if E(D) is the union of two directed 
Hamiltonian cycles. Moreover, the same statement holds when we only allow flip-
ping edges that are oriented differently in X and Y. 	�  ◻

5 � Vertex Flip Distance Between c‑Orientations

In this section we prove Theorem 6.
Recall that, given a graph G with a fixed vertex ⊤ , we only allow vertex flips at 

vertices distinct from ⊤ . In the case that G is connected, we distinguish between 
two types of dicuts as follows: we say that a dicut S in an orientation of G is posi-
tive with respect to ⊤ if and only if the uniquely determined cut set U of S does not 
contain ⊤ . Otherwise the dicut is called negative. We also define the interior of S, 
denoted Int (S) , as the cut set U of S if S is positive and as its complement U if S is 
negative. That is, Int (S) is the set of vertices on the side of the cut opposite to ⊤.

The following lemma is needed to decompose the edges of certain digraphs into 
dicuts with nested cut sets. Formally, for a digraph D and dicuts S1 = �(U1) and 
S2 = �(U2) , the pair S1, S2 is called laminar if either U1 ⊆ U2 , U2 ⊆ U1 , U1 ∩ U2 = � , 
or U1 ∪ U2 = V(D) ; see Fig. 12. A family of dicuts in D is called laminar if all of 
its pairs are laminar. A balanced digraph is a digraph in which every cycle of the 
underlying graph has the same number of forward and backward edges.

Lemma 1  Let D be a balanced digraph. Then E(D) can be decomposed into a lami-
nar family of disjoint minimal dicuts.

Proof  We prove the statement by induction on |E(D)|. It is clearly true if E(D) = � . 
Assume for the induction step that |E(D)| = k ≥ 1 and the statement holds for all 
digraphs with less than k arcs.

As D is balanced, it is obviously acyclic and therefore contains a source 
s ∈ V(D) . Each cycle in the underlying graph of D that contains s has exactly one 
forward and one backward edge incident to s. Therefore, the digraph D′ obtained 
from D by contracting the set �+({s}) of arcs incident to s is still balanced and has 
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less than k edges. By the induction hypothesis, there exists a laminar decomposition 
of E(D�) = E(D) ⧵ �+({s}) into disjoint dicuts in D′ and thus in D. Note that the 
dicuts in D′ are exactly those of D disjoint from �+({s}) , and laminarity is preserved. 
Hence adding a decomposition of the directed vertex cut �+({s}) into minimal dicuts 
to the collection gives rise to a decomposition of E(D) into disjoint minimal dicuts. 
This resulting decomposition is also laminar. To see this, let V1,… ,Vl denote the 
vertex sets of the weak components of D − s ( l = 1 is possible). The new minimal 
cuts added to the decomposition are induced by the cut sets Ui ∶= V(D) ⧵ Vi for 
i ∈ [l] . We clearly have Ui ∪ Uj = V(D) for i ≠ j ∈ [l] . Moreover, for any minimal 
dicut S in the laminar decomposition of D′ , the cut set corresponding to S in D fully 
contains Ui or is disjoint from Ui for some i ∈ [l] (otherwise S would not be mini-
mal). This finally implies that each pair of cuts in the new decomposition is laminar, 
as desired. 	�  ◻

For every pair X, Y of c-orientations on a graph G, the difference X ⧵ Y  denotes 
the set of arcs in X whose orientation is reversed in Y. Because X and Y are c-orien-
tations, every cycle in G has the same number of forward- and backward-edges in 
X ⧵ Y  . The digraph trans(X, Y) obtained from X by contracting X ⧵ Y  therefore forms 
a balanced digraph. Consequently, Lemma 1 provides another proof that c-orienta-
tions can be reached from one another by flipping minimal dicuts.

We now consider the partial order defined on acyclic c-orientations of an 
n-vertex graph such that the covering relation corresponds to flipping a source 
vertex. Recall that by Theorem 4, this partial order is a distributive lattice. We 
now reuse a result from Propp [47] and Felsner and Knauer [20] that gives an 
embedding of this distributive lattice into ℕn−1 , which led to the introduction of 

�

X \ Y

S1

S2

S3

S4

S5 S6

S7

S = S(X, Y )
= {S1, S2, . . . , S7}

−1

−2 0

+1 −1

0

+1

P

S1

S2 S3

S7S4

S5

S6

Fig. 12   A laminar collection S of disjoint minimal dicuts of X ⧵ Y  (left), where the positive ones are 
dashed, and the negative ones are dotted, and the corresponding poset P of dicuts in S ordered by inclu-
sion (right) with its associated signed weights sgn (S) ⋅ w(S) , S ∈ S
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distributive polytopes by Felsner and Knauer [21]. This theorem is illustrated in 
Fig.  8, where the values of the functions zX are depicted in the vertices of the 
graph G.

Theorem 9  ([20, 47]) Let G be a graph on n vertices with a fixed vertex ⊤ , X an 
acyclic c-orientation of G, and denote by Xmin the minimal element of the associ-
ated distributive lattice. Then the number of times zX(x) a vertex x ∈ V(G) ⧵ {⊤} 
is flipped in an upward lattice path from Xmin to X is independent of the sequence. 
The resulting function zX ∶ Rc → ℕ

n−1 is a lattice embedding. That is, for every 
x, y ∈ ℕ

n−1 corresponding to c-orientations of G, the join and meet correspond to 
min(x, y) and max(x, y) , respectively.

In other words, the distributive lattice on Rc is isomorphic to an induced sublat-
tice of the componentwise dominance order on ℕn−1 . We call a vertex flip sequence 
monotone if every flipped vertex is either only flipped as a source or only as a sink. 
With this definition, Theorem 9 yields the following:

Corollary 4  Let G be a graph with fixed vertex ⊤ and X, Y a pair of acyclic c-orien-
tations on G. Then every monotone vertex flip sequence transforming X into Y has 
minimal length.

Consider two c-orientations X, Y of G. Our goal is to construct a monotone flip 
sequence from X to Y. By Lemma 1, there is a laminar decomposition of the edges in 
trans(X, Y) into minimal dicuts. The latter also form a laminar collection S = S(X, Y) 
of minimal dicuts in X which partition X ⧵ Y  . Therefore reversing these dicuts yields 
Y.

We construct a poset P on S by the inclusion order of the interiors of the 
minimal dicuts. That is, for S, T ∈ S , S is ordered before T in P if and only if 
Int (S) ⊆ Int (T) ; see Fig.  12. Since S is laminar, the cover graph of P is a for-
est, with the additional property that every non-maximal element S is covered by 
a unique other element, which we denote by cov (S) . Moreover, for each vertex 
x ∈ V(G) in the interior of at least one of the cuts in S , we let Sx be the (unique) 
minimal element of the poset P such that x ∈ Int (Sx) . Also, for each S ∈ S we 
denote by Int (S) ∶= {x ∈ V(G) ∣ Sx = S} ⊆ Int (S) the set of vertices in the interior 
of S but in none of the interiors of the cuts covered by S in the poset.

For each dicut S ∈ S we define an integer weight w(S) and a sign 
sgn (S) ∈ {+, 0,−} as follows; see Fig. 12. If S ∈ S is a maximal element in P then 
we define w(S) ∶= 1 , and sgn (S) ∶= + if S is positive and sgn (S) ∶= − otherwise. 
For every sign s ∈ {+, 0,−} and dicut S ∈ S , we say that S agrees with s, if either 
s = 0 , or if s = + and S is positive, or s = − and S is negative. For every non-maxi-
mal S ∈ S , we inductively define

and

w(S) ∶=

{
w( cov (S)) + 1 if S agrees with sgn ( cov (S)),

w( cov (S)) − 1 otherwise,
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It follows from this definition that the weights are non-negative and that 
sgn (S) = 0 if and only if w(S) = 0 for every S ∈ S . We will see that given a 
minimal dicut S in S , the weight w(S) describes the number of times each ver-
tex which lies in Int (S) will be flipped, whereas sgn (S) captures the direction in 
which (all) these vertices are flipped. That is, a positive sign means that vertices 
are flipped from sources to sinks, while a negative sign means that vertices are 
flipped from sinks to sources. We will need the following auxiliary statement.

Lemma 2  Let X, Y be acyclic c-orientations of a connected graph G with fixed ver-
tex ⊤ . If S = X ⧵ Y  is a positive dicut, then there is a vertex flip sequence transform-
ing X into Y such that only vertices in Int (S) are flipped, each exactly once from 
source to sink.

The analogous statement for negative dicuts holds with sources and sinks 
exchanged.

Proof  We prove the statement by induction on | Int (S)| . If Int (S) is a single vertex, 
then S corresponds to the arcs incident to a source, and the statement holds.

For the induction step assume | Int (S)| = k ≥ 2 and that the claim holds for all 
positive cuts in c-orientations of G whose interiors have order less than k. Since 
X is acyclic, the induced subdigraph X[ Int (S)] is also acyclic and thus contains a 
source x ∈ Int (S) . Since Int (S) is the cut set of S, x is a source in X as well. Let 
Z be the c-orientation obtained from X by a vertex flip at x. It follows that the cut 
�( Int (S) ⧵ {x}) in Z is positive with interior of order k − 1 . By induction, there is a 
vertex flip sequence from Z to Y such that only vertices in Int (S) ⧵ {x} are flipped, 
each exactly once from source to sink. Starting with a vertex flip at x and continu-
ing with this flip sequence yields a flip sequence from X via Z to Y with the desired 
properties. 	�  ◻

We are now in position to prove the main result of this section.

Theorem 10  Let X, Y be acyclic c-orientations of a connected graph G. There is 
a monotone vertex flip sequence transforming X into Y which can be computed in 
cubic time in |E(G)|.

Proof  Consider the following strengthening of the theorem:
Claim Let X, Y be acyclic c-orientations of a connected graph G and S = S(X, Y) 

a laminar decomposition of X ⧵ Y  into disjoint minimal dicuts. Then there is a mono-
tone vertex flip sequence from X to Y, such that every flipped vertex x is contained 

sgn (S) ∶=

⎧
⎪⎨⎪⎩

sgn ( cov (S)) if sgn ( cov (S)) ≠ 0 and w(S) ≠ 0,

+ if sgn ( cov (S)) = 0,w(S) ≠ 0 and S is positive,

− if sgn ( cov (S)) = 0,w(S) ≠ 0 and S is negative,

0 if w(S) = 0.
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in the interior of the dicut Sx ∈ S , and x is flipped w(Sx) times from source to sink if 
sgn (Sx) = + , and from sink to source otherwise.

We prove this claim by induction on the size of S . The statement is clearly true if 
X = Y  (which means that |S| = 0 ), settling the base case of the induction. Assume 
for the induction step that we are given a pair X ≠ Y  of c-orientations and a laminar 
decomposition S of X ⧵ Y  of size k ≥ 1 . Assume that the claim holds for all pairs of 
c-orientations with a laminar decomposition of size less than k.

In the poset P on S we consider a minimal element corresponding to a cut S ∈ S , 
i.e., we have Int (S) = Int (S) and all vertices x ∈ Int (S) satisfy Sx = S . Lemma 2 
gives a vertex flip sequence F1 that flips only vertices in Int (S) , each exactly once 
from source to sink if S is positive and from sink to source if S is negative. Applying 
this flip sequence to X, we obtain an intermediate c-orientation Z that differs from 
X only by the reversal of all edges in S. Consequently, S ⧵ {S} is a laminar decom-
position of Z ⧵ Y  into minimal dicuts in Z of size k − 1 . By induction, we also have 
a vertex flip sequence F2 transforming Z into Y with the aforementioned properties.

Note that the weights and signs of all dicuts T ∈ S ⧵ {S} defined with respect to S 
or S ⧵ {S} are the same, so we may simply write w(T) and sgn (T) . Furthermore, the 
set Int (T) defined with respect to S is a subset of the same set defined with respect 
to S ⧵ {S} . To complete the induction step, we distinguish two cases.

The first case is that S is a maximal element in P, or that S agrees with 
sgn ( cov (S)) . In this case, we claim that the concatenation F of F1 and F2 is a flip 
sequence transforming X via Z into Y with the desired properties. It suffices to check 
this for the vertices in Int (S) = Int (S) , since for all other vertices, the claimed prop-
erties follow inductively (they are never flipped in F1 , so their behavior in F will be 
the same as in F2 ). If S is a maximal element in P, then w(S) = 1 and every vertex 
x ∈ Int (S) will be flipped exactly once. Moreover, according to Lemma 2, if S is 
positive, i.e., sgn (S) = + , then x is flipped from source to sink, and if S is negative 
and sgn (S) = − , then x is flipped sink to source. It remains to consider the subcase 
that S is not maximal, i.e., cov (S) exists. Consider any vertex x ∈ Int (S) . During 
the flip sequence F, the vertex x is flipped once in F1 and w( cov (S)) times in F2 , 
so w(S) = w( cov (S)) + 1 times in total, as required. Moreover, the assumption that 
S agrees with sgn ( cov (S)) means that either sgn ( cov (S)) = + and S is positive or 
sgn ( cov (S)) = − and S is negative, or w( cov (S)) = sgn ( cov (S)) = 0 . We conclude 
from the inductive assumption that in those three cases, x is only flipped from source 
to sink in both F1 and F2 , or only sink to source in both, or only once in F1 but not in 
F2 , respectively. Consequently, x satisfies the inductive claim in all cases.

The second case is that S is not maximal, i.e., cov (S) exists, and that S does not 
agree with sgn ( cov (S)) . This means that w(S) = w( cov (S)) − 1 . Without loss of 
generality, assume that S is positive and consequently sgn ( cov (S)) = − (the other 
case is symmetric). Consider again the vertex flip sequence F obtained by concat-
enating F1 and F2 . This flip sequence would transform X via Z into Y, however, we 
will not actually apply F, but modify the sequence as follows. By Lemma 2, F1 flips 
each vertex in Int (S) exactly once from source to sink. By induction, in F2 , each 
vertex in Int (S) contained in the interior of cov (S) (defined with respect to S ⧵ {S} ) 
is flipped from sink to source. Let x be the last element of F1 and consider the sub-
sequence x, x1,… , xk, x of F starting with x and ending with the first occurrence of 
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x in F2 . None of the vertices x1,… , xk is adjacent to x in G, because after the first 
vertex flip at x (from source to sink) all edges incident with x are incoming, and in 
F2 we only flip sinks to sources. This shows that deleting the first two occurrences 
of x from F preserves the number of and direction of all flips at vertices distinct 
from x, and still transforms X into Y. Repeated application of this argument pro-
duces a reduced vertex flip sequence F′ transforming X into Y such that each vertex 
x ∈ V(G) ⧵ Int (S) is flipped the same number of times and in the same direction 
as in F2 . By the inductive assumption, this means that x is flipped w(Sx) times from 
source to sink if sgn (Sx) = + , and w(Sx) times from sink to source if sgn (Sx) = − . 
On the other hand, every x ∈ Int (S) is missing its first occurrence in F2 but is flipped 
in the same way from sink to source for all remaining occurrences. This implies 
that x is flipped w(S) = w( cov (S)) − 1 times from sink to source, as it should. This 
proves that F′ is a vertex flip sequence from X to Y satisfying the conditions in our 
claim, completing its proof.

It remains to verify that the recursive algorithm obtained from this inductive 
argument runs in cubic time in m ∶= |E(G)| . First of all, the number of dicuts in 
any laminar decomposition, which corresponds to the number of induction steps, is 
bounded by the number of edges m. Consequently, it suffices to bound the number 
of operations needed in one induction step in terms of m. Specifically, we need to 
compute the cover relations of P, the weights and signs of the dicuts, find a mini-
mal element of the poset P, test its properties for the case distinction and construct 
the resulting flip sequence by concatenation and possibly deletion of double occur-
rences, all of which can be done in time O(m2) . This proves an upper bound of 
O(m3) for the total number of steps performed for the construction of the monotone 
flip sequence to transform X into Y. Finally, a laminar decomposition S of X ⧵ Y  as 
guaranteed by Lemma 1 can be computed in time O(m3) as well, by following the 
recursive strategy explained in the proof of the lemma. This completes the proof. 	
� ◻

Combining Corollary 4 and Theorem 10 yields Theorem 6.

6 � Flip Distance with Larger Cut Sets

In this section we prove Theorem  7 by reduction from the following NP-hard 
problem.

Given a (finite) poset (P,≺) , its height is the maximum size k of a chain 
x1 ≺ x2 ≺ ⋯ ≺ xk in P. A linear extension of P is a sequence (x1,… , xn) of all 
elements of P such that xi ≺ xj implies that i < j . Given a linear extension 
L = (x1,… , xn) of P, a jump is a pair xi, xi+1 in L for which xi ⊀ xi+1 in P. Con-
versely, a bump is a pair xi, xi+1 such that xi ≺ xi+1 . The jump number s(P) of P is 
the minimum number of jumps among all linear extensions of P. The Jump Num-
ber Problem is the algorithmic problem of computing the jump number of a poset 
given by its comparabilities.
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Theorem 11  ([40, 49]) Determining the jump number of a poset of height two is 
NP-hard.

Proof of  Theorem  7  We provide a Turing-reduction of the Jump Number Problem 
for posets of height two to the problem stated in the theorem. For this purpose, 
assume we are given a poset (P,≺) of height two with bipartite Hasse diagram 
G = (P1 ∪ P2,E) as an instance for the Jump Number Problem. We may assume that 
P has no isolated elements and that P1 contains all minimal elements and P2 all max-
imal elements of the poset. We construct an auxiliary graph G′ from G by adding an 
additional unique maximal element ⊤ , and connecting it with edges to all vertices of 
G. We construct two orientations X, Y of G′ as follows: In both orientations all edges 
are oriented from P1 to P2 . Moreover, in X all edges incident with ⊤ are oriented 
towards ⊤ , while in Y all these edges are oriented away from ⊤ . As X, Y are obtained 
from each other by flipping all edges incident with ⊤ (this flip is not allowed, though, 
as ⊤ is the fixed vertex), they are c-orientations with respect to the same c.

Let d denote the minimal flip distance between these c-orientations accord-
ing to the conditions of the theorem. We will complete the proof by showing that 
s(P) = d − 1.

We first show that s(P) ≥ d − 1 . For this argument, let L = (x1,… , xn) be an arbi-
trary linear extension of P. As P has height two, the elements {x1,… , xn} of P are 
partitioned into subsets B1,… ,Bm of size one or two, such that for all Bi,Bj with 
i < j , the elements from Bi appear before the elements from Bj in L, and such that the 
two-element sets Bi contain exactly all bump pairs. We define a flip sequence that 
starts with the orientation X and consecutively flips the cuts induced by B1,…Bm . 
Since for all 1 ≤ i ≤ m , each of Bi and Bi ∶= (P ∪ {⊤}) ⧵ Bi induces a connected 
subgraph of G′ , these are indeed minimal cuts. Moreover, each of these cuts is flip-
pable. This is obviously true for B1 , as B1 induces a dicut in X. Now assume induc-
tively that the cuts induced by B1,… ,Bk−1 for some k ≥ 2 have been flipped. As L is 
a linear extension of P, all elements in the downset of Bk in P but not in Bk are in one 
of the Bi with i < k . This implies that every arc between some x ∈ Bk and y ∉ Bk is 
oriented from x to y in the current orientation, and thus Bi is indeed flippable.

In this flip sequence, every arc in X not incident to ⊤ will be flipped zero or two 
times and thus maintains its original orientation, while all the edges incident to ⊤ get 
reversed, as they are incident to exactly one set Bi . Consequently, the flip sequence 
transforms X into Y, proving that d ≤ m . As m equals the number of jumps in L plus 
1 (every non-jump is a bump within one of the Bi ), this yields d − 1 ≤ s(P).

We now show that s(P) ≤ d − 1 . Assume that B1,… ,Bd ⊆ P are the cut sets of 
size one or two appearing (in this order) in a shortest flip sequence transforming X 
into Y. We may assume that among all shortest flip sequences, this sequence also 
minimizes |B1| + |B2| +…+ |Bd| . Since each vertex x ∈ P has an outgoing arc to 
⊤ in X which must be reversed during the flip sequence, x must be contained in at 
least one of the Bi . We claim that x is contained in at most one of the Bi . That is, the 
Bi are pairwise disjoint. Assume to the contrary that x ∈ Bi ∩ Bj for some i < j and 
that Bi,Bj is the only intersecting pair among Bi,Bi+1,… ,Bj (by minimizing j − i ). 
In particular, none of the cut sets Bi+1,… ,Bj−1 contains x, and x is the only ver-
tex flipped multiple times in this subsequence. We are then in one of the four cases 
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Bi = Bj = {x} , or Bi = {x, y} and Bj = {x} , or Bi = {x} and Bj = {x, z} , or Bi = {x, y} 
and Bj = {x, z} for some elements y, z ∈ P distinct from x. Since no vertex adjacent 
to x in G′ can be flipped by Bi+1,… ,Bj−1 , it follows that in each of these cases, the 
sequence

is a valid flip sequence from X to Y of length at most d and with decreased sum 
|B1| + |B2| +…+ |Bd| , a contradiction. This proves that the cut sets Bi are pairwise 
disjoint.

The Bi are flipped one after the other and by definition of X, the dicut induced 
by Bi is flippable if and only if all the elements in the downset of Bi with respect 
to P but not in Bi were flipped before. Therefore, by listing the elements in the sets 
B1,… ,Bd in this relative order, and ordering the elements within each Bi accord-
ing to their order in P, we obtain a linear extension L of P whose jumps are exactly 
those pairs having elements in two consecutive sets Bi . It follows that there are d − 1 
jumps in L, proving that s(P) ≤ d − 1.

Combining these arguments shows that s(P) = d − 1 , and using Theorem 11 we 
obtain the claimed hardness result. 	� ◻

7 � Open Problems

Recall that Problem 2 asks for a shortest flip sequence of directed cycles transform-
ing one �-orientation X into another one Y, where we only allow flipping edges that 
are oriented differently in X and Y. Since the set of edges that are oriented differently 
in X and Y form an Eulerian subdigraph D of both X and Y, we have the following 
natural question:

Question 1  What is the smallest number of directed cycles into which an Eulerian 
digraph can be decomposed?

We have seen in Theorem 3 that from a computational point of view, this prob-
lem is hard for general digraphs, but we wonder what happens when adding planar-
ity constraints. The aforementioned question can also be studied in terms of upper 
bounds as a function of the number of vertices, which is related to the famous Hajós 
conjecture on undirected Eulerian graphs, see [35]. Another interesting undirected 
variant of Question 1 is the following:

Question 2  Given a graph G with an Eulerian subgraph H, what is the smallest 
number of cycles of G such that their symmetric difference is H?

Concerning our proof of Theorem 7, we believe that for any bound on the size of 
the cuts, the corresponding flip distance will be NP-hard to compute. On the other 
hand, we use very particular graphs as gadgets, and we do not know the complexity 

B1,… ,Bi−1,Bi ⧵ {x},Bi+1,… ,Bj−1,Bj ⧵ {x},Bj+1,… ,Bd
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of the corresponding problem for planar �-orientations. We think the following is an 
interesting special case:

Question 3  Let X, Y be perfect matchings of a planar bipartite 3-connected graph 
G. What is the complexity of determining the distance of X and Y with respect to 
alternating cycles that are either a face or the symmetric difference of two incident 
faces?

The feeling that this problem might be tractable is supported by the following 
observation. It is not difficult to show that every height two poset with bipartite pla-
nar Hasse diagram has dimension at most two. It then follows from [55] that the 
restriction of the Jump Number Problem to such posets is solvable in polynomial 
time, and thus, the hardness reduction presented in the previous section fails.
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