
Vol.:(0123456789)1 3

International Journal of Computational Intelligence Systems (2023) 16:4
https://doi.org/10.1007/s44196-022-00179-1

RESEARCH ARTICLE

A Deep Reinforcement Learning Real‑Time Recommendation Model
Based on Long and Short‑Term Preference

Yan‑e Hou1,2 · Wenbo Gu1,2 · WeiChuan Dong3 · Lanxue Dang1,2

Received: 15 July 2022 / Accepted: 26 December 2022
© The Author(s) 2023

Abstract
With the development of Internet technology, the problem of information overload has increasingly attracted attention.
Nowadays, the recommendation system with excellent performance in information retrieval and filtering would be widely
used in the business field. However, most existing recommendation systems are considered a static process, during which
recommendations for internet users are often based on pre-trained models. A major disadvantage of these static models
is that they are incapable of simulating the interaction process between users and their systems. Moreover, most of these
models only consider users’ real-time interests while ignoring their long-term preferences. This paper addresses the above-
mentioned issues and proposes a new recommendation model, DRR-Max, based on deep reinforcement learning (DRL).
In the proposed framework, this paper adopted a state generation module specially designed to obtain users’ long-term and
short-term preferences from user profiles and user history score item information. Next, Actor-Critical algorithm is used to
simulate the real-time recommendation process.Finally, this paper uses offline and online methods to train the model. In the
online mode, the network parameters were dynamically updated to simulate the interaction between the system and users in
a real recommendation environment. Experimental results on the two publicly available data sets were used to demonstrate
the effectiveness of our proposed model.

Keywords Recommendation system · Deep reinforcement learning · Online recommendation mode · Actor–critic · Long
and short-term preference

1 Introduction

With the rapid development of network technology, the amount
of information on the network has been growing exponentially.
With increasing concerns about information overload on the

Internet, it is critical for Internet companies to accurately and
efficiently sift and recommend information for users based on
their preferences. A promising solution to information overload
is to build a high-performance recommender system. Recently,
recommender systems are extensively researched and many suc-
cessful recommender systems have been developed in the busi-
ness world, including the GroupLens [1], the video streaming
company Netflix [2], the online shopping website JD [3, 4] and
many others. According to the research of Rostami [5], TOPSIS
model is used to search suitable tourist sites for users using ABC
algorithm according to user preferences.

Recommendation algorithms are the core part of a recom-
mendation system, aiming to provide users with accurate recom-
mendations. In general, recommendation algorithms are clas-
sified into traditional recommendation approaches and deep
learning-based approaches. The clustering methods from the
traditional recommendation approaches can recommend user’s
items that are similar to their interests while effectively solve the
data sparsity problem [6, 7]. The clustering-based methods has
been widely used in recommendation algorithms, where matrix

 * Lanxue Dang
 danglx@vip.henu.edu.cn

 Yan-e Hou
 houyane@henu.edu.cn

 Wenbo Gu
 guwenbo@henu.edu.cn

 WeiChuan Dong
 wdong@kent.edu

1 Henan Key Laboratory of Big Data Analysis and Processing,
Henan University, Kaifeng 475004, Henan, China

2 College of Computer and Information Engineering, Henan
University, Kaifeng 475004, Henan, China

3 Department of Geography, Kent State University, Kent,
Oh 44240, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s44196-022-00179-1&domain=pdf
http://orcid.org/0000-0003-1053-6741

 International Journal of Computational Intelligence Systems (2023) 16:4

1 3

 4 Page 2 of 14

decomposition techniques [8] have advantages in addressing
the sparse matrix problem. The advancement in deep learning
techniques has provided new design ideas for recommendation
algorithms. For example, two popular reinforcement learning
(RL) techniques, the value-based [9, 10] and the policy-based
[3, 4, 11] have been applied in many recommendation systems.

Since the user interaction with a recommendation system
is a continuous behavior, an ideal recommendation system
should consider real-time preferences of users. However,
most existing recommendation systems are pre-trained
models and it is difficult for them to capture users’ real-
time interests. To address this problem, several RL-based
approaches, such as POMDP [12] and Q-learning [13], have
been developed to improve the quality of recommendations,
and have been used in multiple recommender systems [3, 4,
9–11]. However, these models are limited in accommodat-
ing complex recommendation scenarios. For example, the
value-based RL recommendation systems [9, 10] are capable
of accurately predicting the probability of a user’s subse-
quent actions, yet the efficiency of Q-value computation is
decreased due to the large computational space. In contrast,
the policy-based RL recommendation systems [3, 4, 11] take
all action spaces as a continuous parameter vector to repre-
sent all actions, followed by the next recommendation and
the update of Q-value. This policy-based approach can avoid
large-scale Q-value computation but it cannot capture the
interaction process between the user and the item accurately.

Most of the traditional methods are based on collabo-
rative filtering, which has the problems of cold start and
excessive computing cost with the increase of data set size.
The recommendation algorithm based on deep learning can
effectively solve the problem of excessive computing cost
by pre training the model, modeling in a nonlinear way, and
encoding more complex abstractions as higher level data
representations, but at the same time, the pre trained model
can not effectively face the real changing recommendation
environment. Therefore, this paper proposes to combine
reinforcement learning with deep learning, use the excel-
lent decision-making ability of reinforcement learning, and
simulate the real real-time recommendation environment.

In view of this, this paper aims to propose a deep rein-
forcement learning-based recommender system model
(donated as DRR-Max), where Max refers to the maximum
pooling layer used in this paper for feature extraction. Our
DRR-Max model consists of two parts: a state generation
module and an Actor–Critic algorithm [14]. The state gen-
eration module is well-designed in the DRR-Max model,
the user item matrix is decomposed into user specific diag-
nosis matrix and item specific detection matrix through
PMF, which solves the sparse matrix problem faced by tra-
ditional algorithms. In the process of interaction, the user’s
long-term and short-term preferences are also taken into
account to generate more accurate user state information.

The generated state information of user’s is then put into the
Actor–Critic algorithm, which is used to simulate the inter-
action process between the user and the recommender sys-
tem, solve the problem that previous models are static. The
Actor–Critic algorithm is applied to predict the next action
according to the user’s state and to evaluate the action. At
the same time, the network parameters are updated dynami-
cally. Finally, both the online and offline experiments were
designed to verify the efficiency of our DRR-Max model
using the Book-crossing and the Amazon-b data sets.

The main contributions of this paper are as follows: (1)
In order to solve the problem that the static model used by
traditional algorithms can not adapt well to the dynamic
interest changes of users, this paper adopts Actor–Critic
algorithm, and the proposed DRR-Max model regards rec-
ommendation as a continuous process, simulating the real
gradual recommendation environment. (2) A new state gen-
eration module is designed to efficiently simulate the inter-
action between users and recommendation items. (3) The
DRR-Max model is tested using two real-world public data
sets, and the results of the comparison with the five tradi-
tional models suggested that our proposed model had better
performance regarding the effectiveness of recommendation.

The rest of the article is organized as follows: Sect. 2
briefly describes the recent development of recommender
systems. The introduction of the deep learning in recom-
mender systems is described in Sect. 3. Section 4 describes
the details of our proposed model and the procedures of
training the model. Experimental results on two public data-
bases and comparison with existing models are analyzed
in Sect. 5. Finally, Sect. 6 draws conclusions of the current
study and give directions of future work.

2 Related Works

This section will discuss the traditional recommenda-
tion algorithms and deep-learning-based recommendation
algorithms.

2.1 Traditional Recommendation Algorithm

Traditional recommendation algorithm consists of content-
based methods, collaborative filtering methods, and hybrid
recommendation methods. Content-based methods use tar-
get-related or user-related information or user’s operation
behavior on the target to construct a recommendation model,
which generally rely on the user’s own behaviors without
involving other users’ behaviors [1, 15]. Collaborative fil-
tering algorithm plays a very important role in the existing
recommendation algorithm. They aim to detect a group of
users with similar tastes and preferences to the target user,
and to recommend items favored by other users in the group

International Journal of Computational Intelligence Systems (2023) 16:4

1 3

Page 3 of 14 4

to the current user. The first collaborative filtering recom-
mendation method proposed by Goldberg [16] can filter out
a set of items of interest for a specific user. Later, a collabo-
rative filtering recommendation algorithm called Dynamic
Decay Collaborative Filtering (DDCF) proposed by Chen
et al. [17] combines the memory curve with collaborative
filtering and considers the user’s long and short-term prefer-
ences. Liao and Li [18] adopted a self-constructed clustering
algorithm to improve the clustering computation efficiency
in collaborative filtering recommendation method without
decreasing the quality of algorithm. In additional, fuzzy
C-means clustering method [19], Top-N method [20], and
other techniques [21] were designed to improve the accuracy
of the collaborative filtering recommendation algorithms.

A real-world recommendation environment is often com-
plex, where a single recommendation approach is often not
competent in achieving optimal results. Hybrid recommenda-
tion algorithms take advantage of multiple recommendation
approaches in obtaining better quality of recommendation.
Tian [22] et al, a hybrid recommender system was designed
to recommend books of most interest to users from a large
number of candidates have adopted a user rating matrix and
clustering method in addressing the sparse matrix problem
[22]. Cai et al. [23] proposed a recommendation system based
on multi-objective optimization to solve the problem of dif-
ferent needs of various users. These hybrid recommendation
algorithms [22, 23] improve performance of the recommenda-
tion to a certain extent.

2.2 Deeping Learning‑Based Recommendation
Algorithm

Nowadays, deep learning-based recommendation algorithms
have become the focus of current research due to the excel-
lent performance of deep learning technique in handling
complex tasks. Zhang et al. [24] summarized the latest
research of recommendation systems based on deep learn-
ing, classify deep learning recommendation systems, includ-
ing recommendation model and techniques, as well as gives
the future research direction. Forouzandeh et al. [25] pro-
posed a new food recommendation system, which divided
the recommendation into two stages. In the first stage, graph-
ical clustering was used, and in the second stage, a method
based on deep learning was used to cluster users and food
to overcome the shortcomings of the previous system, such
as cold start and food composition problems.

Among all deep learning-based algorithms, several algorithms
adopt traditional collaborative filtering to improve the quality of
recommendation [26, 27]. Nassar et al. [27] proposed a deep
learning-based multi-criteria collaborative filtering model. In this
hybrid model, the features of users and items are first obtained,
and then input into a deep neural network to predict standard
scores. These standard scores will further be put into the whole

ranking deep neural network to get the overall score ranking.
Maxim et al. [28] designed a new parallel scheme that enabled
efficient computation of fully connected layers in learning-based
recommendation model.

For temporal recommendation systems, there are some
successful models based on deep learning. Tang and Wang
[29] combines convolutional sequence embedding model
with Top-N sequential recommendation as a way for tem-
poral recommendation. Li et al. [30] designed a new neural
attention recommender network to consider the sequential
behavior of user in current session. Zhang et al. [31] intro-
duced attention mechanism into the sequence-sense rec-
ommendation model to represent user’s temporal interest.
Wu et al. [32] constructed a session-based graph neural
network recommendation model (SR-GNN). In SR-GNN,
session sequences are modeled as image-structured data,
and the GNN can capture complex transformation of rec-
ommendation items. The recent review of temporal recom-
mendation models and algorithms can be found in [33].

There are also several successful deep learning-based
models in temporal recommendation systems. Tang and
Wang [29] combined convolutional sequence embedding
model with Top-N sequential recommendation as a way
for temporal recommendation. Li et al. [30] designed a new
neural attention recommender network that considered the
sequential behavior of user in current session. Zhang et al.
[31] introduced attention mechanism into the sequence-sense
recommendation model that represented user’s temporal
interest. Wu et al. [32] constructed a session-based graph
neural network recommendation model (SR-GNN). In SR-
GNN, session sequences are modeled as image-structured
data, and the graph neural network can capture complex
transformation of recommendation items. Fang et al. [33]
summarizes recent recommendation models and algorithms
based on chronological order.

To avoid the problem of only focusing on short-term
session data and ignoring the long-term interests of users,
a recent study proposed a recommendation model based
on improved recurrent neural network [34]. The authors of
this study subsequently implemented a variety of parallel
recurrent neural networks to model the session graph [35].
For the vector representation of users and recommendation
items, Liu and Chen [36] developed an end-to-end graph
neural network with memory units. In this graph neural
network, the gated recurrent unit was introduced into to
solve the information loss between high-order connected
nodes. Then, convolutional neural networks are adopted
to merge feature vectors between network output layers to
obtain user preferences at different stages.

In recent years, deep RL techniques have promoted the
rapid development of commendation systems. Huang et al.
[37] treated the recommendation process as a Markov deci-
sion process (MDP) and used the recurrent neural network

 International Journal of Computational Intelligence Systems (2023) 16:4

1 3

 4 Page 4 of 14

to simulate the interaction between the recommendation
system and the user. They proposed a top-N interactive rec-
ommender system to maximize long-term recommendation
accuracy. Zheng et al. [9] used a deep Q-learning-based rec-
ommendation framework to improve the real-time recom-
mendation of news. Liu et al. [38] proposed a deep RL-based
recommendation framework, in which the recommendation
process was considered as a sequential decision-making
process. Combined with the Actor–Critic algorithm, the
framework simulates the interaction between the user and the
environment. Zhao et al. [3] designed an online user-agent
interaction environment simulator, where the model can be
trained and parameters can be evaluated in an offline mode to
reduce the train data scale and the running time of the model.
In a subsequent study [4], the authors further introduced a
deep RL-based page recommendation framework to provide
real-time feedback optimization items in the page.

3 Preliminaries

Due to its powerful decision-making capability, RL has
been widely used in many fields. RL simulates the inter-
action between the agent and the environment, where the
agent selects the action and the environment provides the
response to the agent and changes to the new state, ena-
bling RL to learn from interactions. Through the continu-
ally interactions, the agent attempts to obtain the best total
rewards. The decision process of RL can be considered as
a Markov decision process (MDP). MDP can be defined
as (S,A,P,R, �) . Where S is the state space, A is the action
space, P is the state transfer function, R is the return func-
tion, and � is the discount factor. The goal of the agent
in MDP is to find an optimal strategy to maximize the
expected cumulative rewards under any state, or equiva-
lently maximize the cumulative expected reward for an
action in any state.

According to the above description, we can regard the
recommendation process of the recommendation system
as a continuous decision-making process. When interact-
ing with the recommender system, the user can be treated
as the environment and the recommender system is con-
sidered as the agent, which maximizes the cumulative
rewards of the recommender process. Therefore, the whole
recommendation process can be regarded as a MDP pro-
cess which is defined as follows.

• State space S : State st = {s1
t
, s2

t
,… , sN

t
} ∈ S is defined as

the top N items that the user interacts with between time
t. Here, st is arranged in chronological order.

• Action space A : Action at = {a1
t
, a2

t
,… , aK

t
} ∈ A is the

list of selectable actions based on the user’s state st at
time t, and K represents the recommended items to the
user each time number of items.

• State transition P : P is a probability function.
P(st+1 min st, at) represents the probability of transition
from state st to st+1 in the case of state st and action at .
Suppose P(st+1 ∣ st, at,… , s1, a1) = P(st+1 ∣ st, at).

• Reward R : In state st , the recommender system will take
action at to recommend a list of items for the user, and
the user will give feedback on the recommendation list.
The agent will receive different rewards r(st, at) for dif-
ferent actions made by the user on the recommendation
list.

• Discount factor � : � ∈[0,1] is defined as a strategy that
we use to measure rewards. When �=0, we only consider
immediate rewards and ignore long-term rewards. Con-
versely, when �=1, we regard immediate and long-term
rewards as equally important.

In the recommendation model proposed in this paper, the
action represents a continuous vector of parameters instead
of a single item or a group of items. The vector is subjected
to an inner product operation with the item feature matrix,
which in turn yields the ranking of the candidate items and
recommends the top N items to the user. The user receives the
recommended items from the system and provides feedback
to the recommendation system, based on which the user status
is updated and the recommendation system receives rewards.

4 Methodology

In this section, we first introduce the model in detail, and
elaborated the training process of the model.

4.1 Proposed Model

4.1.1 State Generation Module

The state generation module generates the current state of the
user based on user feature information and user’s historical
interaction item feature matrix. An efficient state generation
network not only generates high quality state information, but
also helps the Actor–Critic network perform action generation.

Figure 1 gives the structure of state generation module.
As shown in Fig. 1, the user feature matrix and the feature
matrix of the user’s first N interaction items at moment t are
the input data and the user’s current state is the output of
the module. Among them, this paper decomposes the prob-
ability matrix of the test data set to obtain the user char-
acteristic matrix and project characteristic matrix with the
scale of N , and we express the user characteristic matrix as:
U = {u1, u2, ..., un} , and the project specific diagnosis matrix
as: I = {i1, i2, ..., in} . There are three parts in state genera-
tion module: the first one is the user feature matrix u on the
left; the second one is the matrix information of the feature

International Journal of Computational Intelligence Systems (2023) 16:4

1 3

Page 5 of 14 4

matrix of the N items after the maximum pooling layer on
the right; the last one is the matrix multiplication operation
of the left and right parts in the middle. Therefore, the model
not only obtains information about the user’s characteris-
tics, but also extracts information about the user’s historical
behavior. Meanwhile, the user’s information and the behav-
ioral information can be interacted with each other to obtain
a more accurate user’s current state. The state generation
module can be represented in Eqs. (1) and (2):

where ⊗ denotes the product of elements, ia is the special
diagnosis matrix of item a, and g(⋅) denotes the max-pooling
layer. Both user u and item i have dimension k, the dimen-
sion of st is 3k.

4.1.2 Actor–Critic Network

The current state of the user is obtained by the state gen-
eration module and used as input of the Actor–Critic net-
work, which generates action information and thus a list of
item recommendations for the user. Actor–critic algorithm
combines the characteristics of strategy-based and value-
based RL algorithms. Actor is responsible for generating
actions and interacting with the user based on the state,
and Critic is responsible for evaluating the action.

The actor network, known as a policy network, is used to
generate actions based on the current state of the user. The
actor network in this paper is shown in the left part of Fig. 2.
Its input is the state st , and the output is the user’s action
at at time t. Specifically, the state st is transformed into the
action at = ��(st) after two ReLU layers and a Tanh layer.

(1)st = [u, u⊗ {g(ia ∣ a = 1, ..., n)}, {g(ia ∣ a = 1, ..., n)}]

(2)g(ia) =max(ia) ∣ a = 1, ..., n

From the previous section, we know that the dimension of
s is 3 ∗ k , and the action at ∈ R1×k . Through the action, we
can perform a matrix product operation with the item space
to obtain the ranking of the items, as shown in Eq. (3):

where it represents the recommended project space. For the
final list of recommendation, we take the top N from the
ranking. In this process, we use the � − greedy strategy.

The critic network shown in the right part of Fig. 2,
which is the key part of the whole network. The critic
network is designed as an approximator to learn the action-
value function Q(st, at) , which is used to determine whether
the action at generated by the actor network matches the
state st that the user is currently in. Then, according to
the action value function, the actor–critic network updates
the network parameters in the direction of improving the
accuracy of the prediction. It will be helpful to adapt to the
state that user is in during subsequent action generation.

Many applications in RL use the most action-value
function Q∗(st, at) . Its optimal strategy achieves the maxi-
mum expected rewards, and the corresponding Bellman
equation is described as follows:

In the real environment the whole action space A needs to
be calculated to select the optimal action at+1 . It is impracti-
cal to get the best action by computing Eq. (4), because the
action space of the real environment is usually huge. So, the
critic network in our proposed model uses a definite action
a, which is provide by the actor network. This way can avoid
the calculation cost of the entire action space A in Eq. (4).
Equation (5) is the Q-value evaluation function that we are
adopted in this paper:

(3)rankingI = ita
T
t

(4)Q∗(st, at) = �st+1
[rt + �maxat+1Q

∗(st+1, at+1) ∣ st, at]

Fig. 1 State generation network

 International Journal of Computational Intelligence Systems (2023) 16:4

1 3

 4 Page 6 of 14

where Q�(st, at) represents the evaluation function of the
pair of state-action (st, at) , critic network, which also denote
the match degree of st and at . Critic network evaluates the
state s generated by the state generation module and the
action a generated by the actor network, and then outputs
Q-value. According to the Q-value, network parameters
can be updated to improving the accuracy of action a, i.e.,
increasing the value of Q�(st, at) . We update the Actor net-
work parameters by Eq. (6), and we use the sampling policy
gradient to execute the update operation.

In Eq. (6), J(��) is the expected value of all Q-values that
adhere to the �� strategy. In the process of updating the critic
network, we use a mini-batch strategy and a time difference
learning approach. Equation (7) defines the mean squared
error, and yi is shown in Eq. (8).

(5)Q�(st, at) = �st+1
[rt + �Q�(st+1, at+1) ∣ st, at]

(6)∇�J(��) ≈
1

N

∑

t

∇aQ�(s, a) ∣s=st ,a=∇��� (st)
∇���(s) ∣s=st

In the above formula, N is the batch size, �′ is a parameter
of the Actor network and �′ is a parameter of the Critic
network.

4.2 Model Training

In this section, inspired by previous studies [4, 9], we per-
formed the work about the model training in offline and
online modes separately. The offline mode is similar to a
traditional recommender system, which uses a pre-trained
model to make recommendations for the user. The online
mode adopts dynamically updated network parameters to
simulate the interaction between the system and users in a
real recommendation environment.

(7)L =
1

N

∑

i

(yi − Q�(si, ai))
2

(8)yi = ri + �Q�� (si+1,��� (si+1))

Algorithm 1 State Generation Module
Input: User embeddings U of size w×1 and Items embeddings I of size w×N .
Output: User state embeddings s.
1: right = maxpool(I)
2: middle = U∗right
3: s = concat(U , middle, right)

Fig. 2 Actor-critic network

International Journal of Computational Intelligence Systems (2023) 16:4

1 3

Page 7 of 14 4

4.2.1 Offline Mode

As mentioned above, the offline mode uses a traditional
training and testing model. The process of offline training
consists of the two steps. First, we use the state generation
module in our proposed model to generate the current state
of the user. Then, the actor–critic network will be used to
get the best result.

Algorithm 1 is the pseudocode of the state generation
module. This paper uses PMF [8] to randomly generate

initialized user feature matrix U and item feature matrix
I as the input of the state generation module. Where
I = {i1, i2, ..., in} , U = {u1, u2, ..., un} , n is the dimension of
the characteristic matrix. Through line 1, we can get the
obtain information on the characteristics of I . In line 2, get
the user and project interaction information. Merge the user
profile information with the above two types of information
by line 3. When the Algorithm 1 is finished, we will get the
current state of the user.

Algorithm 2 Offine Train Mode
Data: Actor learning rate ηa, critic learning rate ηc, discount factor λ, batch
size B, recommend window size K, user space U , item space I.
1: Initialize actor network πθ and critic network Qω with random weights θ

add ω ;
2: Initialize the target network π

′
and Q

′
with weights θ

′ ← θ and ω
′ ← ω ;

3: Initialize replay buffer D;
4: for j in U do
5: Get user j historical recommended items Ij ;
6: Discard users with less than N reviews ;
7: if length of Ij < N then
8: continue;
9: end if

10: Get the current state st of j by Algorithm 1;
11: Get recommended actions at through the actor network by policy at =

πθ(st) ;
12: Calculate recommended item Ik according to equation (3) ;
13: for i in Ik do
14: if User ratings for i then
15: Reward rt=R(st, at);
16: else
17: Reward rt=PMF (i, j);
18: end if
19: end for
20: Through the critic network get the Qω(st, at) ;
21: Observe new state st+1 by Algorithm 1;
22: Store transition (st, at, rt, st+1) in D;
23: Sample a minibatch of N transitions (si, ai, ri, si+1) in D with priori-

tized experience replay sampling technique;
24: Set yi by equation (8) ;
25: Update the critic network by minimizing the loss: L = 1/N

∑
i(yi −

Qω(si, ai))2

26: Update the actor network using the sampled policy gradient: ∇θ(πθ) ≈
1/N

∑
t ∇aQω(s, a) |s=st,a=∇θπθ(st) ∇θπθ(s) |s=st ;

27: Update the target networks: θ
′ ← τθ+ (1− τ)θ

′
ω

′ ← τω+ (1− τ)ω
′

return θ, ω ;
28: end for

 International Journal of Computational Intelligence Systems (2023) 16:4

1 3

 4 Page 8 of 14

Once we get the current state of the user, we will
train the model by the Actor–Critic network in offline
mode. The training process of the actor–critic network is
described in Algorithm 2. The whole training procedure
consists of three phases, which are the action generation,
evaluation generation and model updating, respectively.
The description of Algorithm 2 is introduced in the
following.

The training process starts with random initialization of
the network weights and the buffer D (lines 1 ∼3). The main
loop of the Algorithm 2 is shown in lines 4 ∼28. In the action
generation phase (lines 5 ∼11), we set a minimum number of
evaluations N for user selection (lines 6 ∼ 9) to obtain enough
available information. After obtaining the user feature
matrix and the first N historical evaluation feature matrices,
the user’s state matrix st at the current moment can be obtain
by Algorithm 1(line 10). The state matrix st , is inputted to
the actor network to obtain the user’s current action at .
Each loop, we select a userjfrom the user spaceU

to recommend services.
 Then, the recommended actions at ,

a
t
∈ R

1×k, kis the length of item spaceI. is gotten by the actor net-
work applying the policy (line 11).

In the second stage (lines 12∼23), we use the Critic net-
work to calculate the optimal action value function Q�(st, at) .
First, we take the top K items, which sorted by the scores
obtained through Eq. (3), as the recommendation list (line
12). Next, the reward will be calculated (lines 13∼19). If user
rates an item in the recommendation list, the reward function
is based on the user’s evaluation score. If user does not rate,
the PMF predicts the score as a reward. Based on the action
at at time t, and the state matrix st , the optimal action value
function Q�(st, at) is calculated through the Critic network
(line 20). The user’s next state st+1 is updated based on the
reward, and the quaternion (st, at, rt, st+1) is stored in the
cache D (lines 21∼23).

In the third stage (lines 24∼27), that is mode updating, the
iterative target value is obtained by Eq. (8), and update the
Critic and Actor networks according to Eqs. (7) and (6) to

Fig. 3 Online mode

International Journal of Computational Intelligence Systems (2023) 16:4

1 3

Page 9 of 14 4

minimize errors (lines 24∼26). Finally, the target networks
parameters � and � are updated.

4.2.2 Online Mode

Although offline training model is the same as the traditional
training, it does not exactly match the real recommendation
scenarios in reality and cannot capture the changes in users’
interests. Thus, we designs an online recommendation model
to update the network synchronously during the recommen-
dation process. The online model employs an update strategy
shown in Fig. 3, which uses the users’ historical comment
data sorted by timestamps, and makes recommendations in
chronological order to simulate users’ online patterns.

The online training mode is made up of the recommenda-
tion stage and the training stage. In the project recommenda-
tion stage, the system recommends projects for users accord-
ing to their interests and preferences. Once the user feedback
is obtained, the next recommendation will be made. After
finishing several recommendation processes, a certain num-
ber of user feedback information will be obtained, and then
network parameters are updated through the training step.
Therefore, the online training mode is able to simulate the
real recommendation environment to a certain extent.

5 Experiments

To determine the validity of DRR-MAX model, we designed
two experiments including offline and online recommenda-
tion modes. Experimental validation was performed on two
publicly available data sets: Book-crossing and Amazon-
b. In the offline mode experiment, we adopt three evalu-
ation indicators, including recall rating, precision, and F1
to evaluate the proposed model. Meanwhile, we compared
our model with other five models—CDL [39], CMF, PMF
[40], DLMR–DAE [41], and HBSADE [42]. For the online
mode experiment, we used the reward function to evaluate
the effect of recommendation. All algorithms and experi-
ments were designed and implemented using Python 3.8 and
Torch 1.9.1 in a computer with an i7-10875 H CPU and
RTX3060 GPU.

5.1 Data Set Description

The description of two public real data sets are introduces
in the following:

(1) Book-crossing: The Book-crossing data set is a set of
rating data sets for books, which contains 1,149,780
ratings for 271,379 books from 278,858 users. The
rating of every book ranges from 1 to 10. This data

set contains three columns of data, which are user ID,
book ISBN and user rating, and each row represents the
user’s rating for a certain book.

(2) Amazon-b: The Amazon-b data set is a rating data
set for books in the Amazon data set, which con-
tains 1,048,576 rating information for 33,122 books
by 705,955 users. The value of rating is a number
between1 and5. The difference between this data set
and the Book-crossing data set is that there is an addi-
tional set of timestamp information to record the user’s
rating time, expect for the user ID, the book ID and the
rating.

From the number of users, books and ratings in both data
sets, it is easy to see that both data sets are highly sparse.
To improve computing efficiency, the rating data has been
pre-processed and the rating values have been uniformly
normalized to a range between -1 and 1. At the same time,
we divided the data set into the training set and test set with
an 8:2 ratio.

5.2 Evaluation Metrics

The main purpose of this recommender system is to gen-
erate top-N recommended items for users. Therefore, we
use precision and recall, which are donated as Precision@N
and Recall@N, respectively, to evaluate the recommendation
quality of the recommender system. In our model, we recom-
mend N items for a user at a given moment in time, and these
two metrics are defined in Eqs. (9) and (10).

In the above equations, TP represents the number of positive
ratings for users in the predicted items, FN is the number
of incorrect prediction results, FP denotes the number of
negative cases in user evaluation, thus TP + FP denotes the
number of user evaluation items and TP + FN denotes the
number of recommended items at a time N.

The F1 score is also used to assess the balance between
Recall@N and Precision@N. The formula for calculating F1
is described as follows:

While for the online recommendation model simulated, we
use the reward function Reward to evaluate the recommen-
dation effect. Due to the limited number of user evaluations,
we divide the reward function into two cases whether the

(9)Precision@N =
TP

TP + FP

(10)Recall@N =
TP

TP + FN

(11)F1 = 2 ∗
Precision@N ∗ Recall@N

Precision@N + Recall@N

 International Journal of Computational Intelligence Systems (2023) 16:4

1 3

 4 Page 10 of 14

recommended item is rated by users. The two reward func-
tions are defined in Eqs. (12) and (13), respectively. When
the recommendation item has a user rating, the reward value
is the user rating regularized score, which is assumed a num-
ber between 1 and 5. When the recommended item is not
rated by the user, we adopt the product of the feature matri-
ces simulated by PMF of the user and the item to obtain the
predicted rating of user, and then take the predicted rating
as the reward value.

5.3 Parameter Settings

For the two data sets, a recommended item is considered as
a successful recommendation, when the user rating of it is
above 0.5. Before training, a 200-dimensional feature matrix
of users and items are first generated randomly using PMF.
During the recommendation process, we remove the recom-
mended successful items from the candidate set each time
to avoid recommending duplicate items. We set the learning
rate of the actor network to 0.0001, the critic network to
0.001, the discount rate � to 0.9, and the batch size to 64. We
also use the Adam optimizer to update the network param-
eters and L2 paradigm regularization to prevent overfitting.

5.4 Compared Models

We compared our model with several representative meth-
ods, including CDL [39], CMF, PMF [40], DLMR–DAE
[41] and HBSADE [42], to determine the effectiveness of
our model. The details of these five models are as follows.

• CDL: CDL is a tightly coupled hybrid recommendation
algorithm, which combines the stack autoencoder SDAE
and CTR through a Bayesian graph.

• CMF: CMF is a basic cross-domain recommendation
method, which performs cross-domain recommendation
by sharing factors among users and decomposing the
cross-domain joint scoring matrix.

• PMF: PMF was proposed by [40], which uses the SVD
method to decompose the matrix, and the decomposition
process to ignore zero values.

• DLMR–DAE: This model obtains information by user
reviews, and generates recommendation list by convolu-
tion matrix decomposition.

• HBSADE: HABASE is a hybrid Bayesian stacking
automatic de-encoder model, which obtains contextual
information through the MF method, identifies user’s

(12)Reward (rt) =
1

2
(ratei,j − 3)

(13)Reward (rt) = PMF(i, j)

interests, and then makes recommendations based on
user interests.

5.5 Results and Analysis

5.5.1 Offline Mode Experiment

From Tables 1, 2, 3, 4, the comparison results on two real
public data sets are given. For every model considered in this
paper, we can find their precision and recall values. From the

Table 1 Precision for Book-crossing data set

Algorithm N=5 N=10 N=15 N=20 N=25

PMF 0.107 0.098 0.089 0.085 0.078
CMF 0.185 0.147 0.137 0.124 0.117
CDL 0.190 0.175 0.113 0.123 0.112
DLMR–DAE 0.198 0.195 0.186 0.157 0.158
HBSADE 0.283 0.253 0.256 0.237 0.232
DRR-Max 0.413 0.356 0.321 0.281 0.264

Table 2 Precision for Amazon-b data set

Algorithm N=5 N=10 N=15 N=20 N=25

PMF 0.103 0.093 0.082 0.071 0.069
CMF 0.183 0.164 0.132 0.122 0.116
CDL 0.193 0.186 0.124 0.119 0.118
DLMR–DAE 0.295 0.276 0.253 0.234 0.234
HBSADE 0.312 0.297 0.272 0.258 0.258
DRR-Max 0.673 0.548 0.504 0.504 0.518

Table 3 Recall for Book-crossing data set

Algorithm N=5 N=10 N=15 N=20 N=25

PMF 0.105 0.114 0.123 0.161 0.134
CMF 0.157 0.168 0.164 0.191 0.197
CDL 0.156 0.177 0.195 0.209 0.217
DLMR–DAE 0.305 0.327 0.344 0.354 0.353
HBSADE 0.327 0.349 0.364 0.382 0.371
DRR-Max 0.257 0.388 0.460 0.481 0.522

Table 4 Recall for Amazon-b data set

Algorithm N=5 N=10 N=15 N=20 N=25

PMF 0.109 0.124 0.138 0.151 0.152
CMF 0.203 0.211 0.223 0.226 0.226
CDL 0.193 0.209 0.224 0.236 0.238
DLMR–DAE 0.318 0.352 0.376 0.381 0.382
HBSADE 0.341 0.376 0.382 0.398 0.399
DRR-Max 0.510 0.654 0.698 0.701 0.731

International Journal of Computational Intelligence Systems (2023) 16:4

1 3

Page 11 of 14 4

experimental results, we can draw the following conclusions.
First, the recall and precision of the PMF model is lowest
among of these models. Second, CDL improves recommen-
dation performance by introducing a denoising self-encoder,
making its recommendation accuracy slightly higher than
the PMF. Then, compared with PMF and CDL, CMF does
not improve the recommendation accuracy. Although CMF
incorporates a composite deep learning CNN model in cap-
turing the correlation between the user’s pre and post behav-
ioral information, it has limited effect on improving accu-
racy. Next, the DLMR–DAE outperforms the PMF, CDL
and CMF methods by exploring the fixed interests of users.
While for HBASE, it is more effective than DLMR–DAE.

This is due to that the HBASE model is enhanced by a
hybrid Bayesian overlay auto-decoder model. Finally, our
proposed DRR-Max model generally outperforms other five
models, expect that the only one results of Recall@5 was
slightly lower than the DLMR–DAE and HABASE.

Tables 5 and 6 show the values of F1 all the models for
different recommended list lengths. The results show that
the DRR-Max model is better than other five models, such
as CDL, CMF, PMF, DLMR–DAE and HBSADE.

Figure 4 shows the precision metrics of the PMF, CMF,
CDL, DLMR–DAE, HBSADE and DRR-Max models on
the Book-crossing data set and Amazon-b data set. The
DRR-Max has the highest precision values on the two data
sets among all models. As shown in Fig. 4, the recommen-
dation accuracy tends to decrease as the length of recom-
mendation list increases. At the same time, the accuracy
of small batch recommendations is generally higher than
that of large batch recommendations.

Figure 5 shows the results of taking recall as the metric
on the Book- crossing data set and Amazon-b data set.
The DDR-max model have the larger recall values than
other five models except that the length of recommended
list equals 5. Unlike the precision in Fig. 4, it can be seen
that as the length of recommended list become large, the
recall of the model rises.

Figure 6 shows the results on the Book-crossing and
Amazon-b data sets, respectively, when the evaluation
metric is F1. We can see from Fig. 6 that the value of F1
decreases when the commendation list N increases.

For three metrics used in this paper, we find that they
have similar curves of change when the length of com-
mendation list increases. Meanwhile, as shown in Figs. 4
to 6, the proposed model DDR-Max outperforms other
five models.

Table 5 F1 for Book-crossing data set

Algorithm N=5 N=10 N=15 N=20 N=25

PMF 0.106 0.105 0.103 0.111 0.099
CMF 0.169 0.159 0.149 0.150 0.147
CDL 0.171 0.176 0.143 0.155 0.148
DLMR–DAE 0.240 0.244 0.241 0.218 0.218
HBSADE 0.303 0.293 0.300 0.293 0.285
DRR-Max 0.317 0.371 0.378 0.354 0.350

Table 6 F1 for Amazon-b data set

Algorithm N=5 N=10 N=15 N=20 N=25

PMF 0.105 0.106 0.102 0.097 0.095
CMF 0.192 0.185 0.166 0.158 0.153
CDL 0.193 0.197 0.160 0.158 0.157
DLMR–DAE 0.306 0.309 0.302 0.290 0.290
HBSADE 0.326 0.331 0.318 0.313 0.313
DRR-Max 0.580 0.596 0.585 0.586 0.606

Fig. 4 Procession for Book-crossing and Amazon-b data sets

 International Journal of Computational Intelligence Systems (2023) 16:4

1 3

 4 Page 12 of 14

5.5.2 Online Mode Experiment

For the online experiments on Book-crossing and Ama-
zon-b, we use the reward function Reward as the evalua-
tion function. At the same time, we also use different sizes
of the recommended items list to evaluate the proposed
model. Here, we do not compare our proposed model with
other models, due to the simulating online experiment.
The experiment results are given in Table 7. As shown in
Table 7, the reward values obtained are around 0.5 in both

data sets, when the length of recommended list has differ-
ent values. The results reveal that our proposed model is
stable as well as effective in the simulated environment of
real-time user-system interaction.

6 Conclusion

In this paper, we propose a recommendation model
based on deep reinforcement learning (DRR-Max). The
specially designed state generation module can obtain
the long-term and short-term interest changes of users
according to the user’s history interaction projects, and
generate the current state information of users at the same
time. At the same time, we designed two kinds of train-
ing experiments, offline and online. Finally, we evalu-
ated our DRR-Max models on two real public data sets:

Fig. 5 Recall for Book-crossing and Amazon-b data sets

Fig. 6 F1 for Book-crossing and Amazon-b data sets

Table 7 Reward for online mode

Data set N=5 N=10 N=15 N=20 N=25

Book-crossing 0.5045 0.5029 0.5023 0.5017 0.5015
Amazon-b 0.4983 0.4990 0.4999 0.5010 0.5013

International Journal of Computational Intelligence Systems (2023) 16:4

1 3

Page 13 of 14 4

Book-crossing and Amazon-b. Compared with PMF, CDL,
CMF, DLMR–DAE and HBSADE models, DRR-Max
model shows good performance in precision, recall and
F1. The proposed DRR-Max model also has the advantage
of updating the network in real-time when it is deployed.

Future works should focus on extracting multi-dimen-
sion information of recommendation items and the users.
This information can be used to further classify recom-
mendation items and the users. In additional, more detailed
feature information also needs to be obtained to provide
the more accurate recommendations.

Declarations

Conflicts of Interest The authors declare that they have no conflicts of
interest to report regarding the present study.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Resnick, P., Iacovou, N., Suchak, M., et al.: Grouplens: An open
architecture for collaborative filtering of netnews[C]//Proceedings
of the. ACM Conf. Comput. Supported Cooperative Work. 1994,
175–186 (1994). https:// doi. org/ 10. 1145/ 192844. 192905

 2. Gomez-Uribe, C.A., Hunt, N.: The netflix recommender system:
Algorithms, business value, and innovation. ACM Trans. Manage.
Inform. Syst. (TMIS) 6(4), 1–19 (2015). https:// doi. org/ 10. 1145/
28439 48

 3. Zhao, X., Zhang, L., Xia, L. et al.: Deep reinforcement learn-
ing for list-wise recommendations[J]. arXiv preprint arXiv: 1801.
00209, 2017. https:// doi. org/ 10. 48550/ arXiv. 1801. 00209

 4. Zhao, X., Xia, L., Zhang, L. et al.: Deep reinforcement learning
for page-wise recommendations. in Proceedings of the 12th ACM
Conference on Recommender Systems. 2018: 95-103. https:// doi.
org/ 10. 1145/ 32403 23. 32403 74

 5. Rostami, M., Oussalah, M., Farrahi, V.: A novel time-aware food
recommender-system based on deep learning and graph cluster-
ing. IEEE Access (2022). https:// doi. org/ 10. 1109/ ACCESS. 2022.
31753 17

 6. Ahuja, R., Solanki, A., Nayyar, A.: Movie recommender system
using k-means clustering and k-nearest neighbor[C]//2019 9th
International Conference on Cloud Computing, Data Sci. Eng.
(Confluence). IEEE, 2019: 263-268. http:// doi. org/ 10. 1109/
CONFL UENCE. 2019. 87769 69

 7. Phorasim, P., Yu, L.: Movies recommendation system using col-
laborative filtering and k-means. Int. J. Adv. Comput. Res. 2017,
7(29): 52. http:// dx. doi. org/ 10. 19101/ IJACR. 2017. 729004

 8. Kushwaha, N., Sun, X., Singh, B., et al.: A Lesson learned from
PMF based approach for Semantic Recommender System[J]. J.
Intell. Inform. Syst. 50(3), 441–453 (2018). https:// doi. org/ 10.
1007/ s10844- 017- 0467-2

 9. Zheng, G., Zhang, F., Zheng, Z., et al.: DRN: a deep reinforcement
learning framework for news recommendation. Proc. World Wide
Web Conf. 2018, 167–176 (2018). https:// doi. org/ 10. 1145/ 31788
76. 31859 94

 10. Zhao, X., Zhang, L., Ding, Z. et al.: Recommendations with nega-
tive feedback via pairwise deep reinforcement learning[C]//Pro-
ceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 2018: 1040-1048. https://
doi. org/ 10. 1145/ 32198 19. 32198 86

 11. Liu, F., Guo, H., Li, X. et al.: End-to-end deep reinforcement
learning based recommendation with supervised embedding. in
Proceedings of the 13th International Conference on Web Search
and Data Mining. 2020: 384-392. https:// doi. org/ 10. 1145/ 33361
91. 33718 58

 12. Shani, G., Heckerman, D., Brafman, R.I.: An MDP-based recom-
mender system. J. Mach. Learn. Res. 6, 1265–1295 (2005)

 13. Taghipour, N., Kardan, A.: A hybrid web recommender system
based on q-learning[C]//Proceedings of the. ACM Symp. Appl.
Comput. 2008, 1164–1168 (2008). https:// doi. org/ 10. 1145/ 13636
86. 13639 54

 14. Peters, J., Schaal, S.: Natural actor-critic[J]. Neurocomputing
71(7–9), 1180–1190 (2008). https:// doi. org/ 10. 1016/j. neucom.
2007. 11. 026

 15. Deng, J., Guo, J., Wang, Y.: A novel K-medoids clustering rec-
ommendation algorithm based on probability distribution for
collaborative filtering. Knowl.-Based Syst. 175, 96–106 (2019).
https:// doi. org/ 10. 1016/j. knosys. 2019. 03. 009

 16. Goldberg, D., Nichols, D., Oki, B.M., et al.: Using collaborative
filtering to weave an information tapestry. Commun. ACM 35(12),
61–70 (1992). https:// doi. org/ 10. 1145/ 138859. 138867

 17. Chen, Y.C., Hui, L., Thaipisutikul, T.: A collaborative fil-
tering recommendation system with dynamic time decay. J.
Supercomput. 77(1), 244–262 (2021). https:// doi. org/ 10. 1007/
s11227- 020- 03266-2

 18. Liao, C.L., Lee, S.J.: A clustering based approach to improving
the efficiency of collaborative filtering recommendation. Electron.
Commerce Res. Appl. 18, 1–9 (2016). https:// doi. org/ 10. 1016/j.
elerap. 2016. 05. 001

 19. Koohi, H., Kiani, K.: User based collaborative filtering using
fuzzy C-means[J]. Measurement 91, 134–139 (2016). https:// doi.
org/ 10. 1016/j. measu rement. 2016. 05. 058

 20. Deshpande, M., Karypis, G.: Item-based top-n recommendation
algorithms. ACM Trans. Inform. Syst. (TOIS) 22(1), 143–177
(2004). https:// doi. org/ 10. 1145/ 963770. 963776

 21. Polatidis, N., Georgiadis, C.K.: A multi-level collaborative filter-
ing method that improves recommendations[J]. Expert Syst. Appl.
48, 100–110 (2016). https:// doi. org/ 10. 1016/j. eswa. 2015. 11. 023

 22. Tian, Y., Zheng, B., Wang, Y., et al.: College library personal-
ized recommendation system based on hybrid recommendation
algorithm[J]. Proc. CIRP 83, 490–494 (2019). https:// doi. org/ 10.
1016/j. procir. 2019. 04. 126

 23. Cai, X., Hu, Z., Zhao, P., et al.: A hybrid recommendation system
with many-objective evolutionary algorithm[J]. Expert Syst. Appl.
159, 113648 (2020). https:// doi. org/ 10. 1016/j. eswa. 2020. 113648

 24. Zhang, S., Yao, L., Sun, A., et al.: Deep learning based recom-
mender system: a survey and new perspectives[J]. ACM Com-
put. Surveys (CSUR) 52(1), 1–38 (2019). https:// doi. org/ 10. 1145/
32850 29

 25. Forouzandeh, S., Rostami, M., Berahmand, K.: A hybrid method
for recommendation systems based on tourism with an evolution-
ary algorithm and topsis model. Fuzzy Inform. Eng. 14(1), 26–50
(2022). https:// doi. org/ 10. 1080/ 16168 658. 2021. 20194 30

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/192844.192905
https://doi.org/10.1145/2843948
https://doi.org/10.1145/2843948
http://arxiv.org/abs/1801.00209
http://arxiv.org/abs/1801.00209
https://doi.org/10.48550/arXiv.1801.00209
https://doi.org/10.1145/3240323.3240374
https://doi.org/10.1145/3240323.3240374
https://doi.org/10.1109/ACCESS.2022.3175317
https://doi.org/10.1109/ACCESS.2022.3175317
http://doi.org/10.1109/CONFLUENCE.2019.8776969
http://doi.org/10.1109/CONFLUENCE.2019.8776969
http://dx.doi.org/10.19101/%20IJACR.2017.729004
https://doi.org/10.1007/s10844-017-0467-2
https://doi.org/10.1007/s10844-017-0467-2
https://doi.org/10.1145/3178876.3185994
https://doi.org/10.1145/3178876.3185994
https://doi.org/10.1145/3219819.3219886
https://doi.org/10.1145/3219819.3219886
https://doi.org/10.1145/3336191.3371858
https://doi.org/10.1145/3336191.3371858
https://doi.org/10.1145/1363686.1363954
https://doi.org/10.1145/1363686.1363954
https://doi.org/10.1016/j.neucom.2007.11.026
https://doi.org/10.1016/j.neucom.2007.11.026
https://doi.org/10.1016/j.knosys.2019.03.009
https://doi.org/10.1145/138859.138867
https://doi.org/10.1007/s11227-020-03266-2
https://doi.org/10.1007/s11227-020-03266-2
https://doi.org/10.1016/j.elerap.2016.05.001
https://doi.org/10.1016/j.elerap.2016.05.001
https://doi.org/10.1016/j.measurement.2016.05.058
https://doi.org/10.1016/j.measurement.2016.05.058
https://doi.org/10.1145/963770.963776
https://doi.org/10.1016/j.eswa.2015.11.023
https://doi.org/10.1016/j.procir.2019.04.126
https://doi.org/10.1016/j.procir.2019.04.126
https://doi.org/10.1016/j.eswa.2020.113648
https://doi.org/10.1145/3285029
https://doi.org/10.1145/3285029
https://doi.org/10.1080/16168658.2021.2019430

 International Journal of Computational Intelligence Systems (2023) 16:4

1 3

 4 Page 14 of 14

 26. Zhang, L., Luo, T., Zhang, F., et al.: A recommendation model
based on deep neural network. IEEE Access 6, 9454–9463 (2018).
https:// doi. org/ 10. 1109/ ACCESS. 2018. 27898 66

 27. Nassar, N., Jafar, A., Rahhal, Y.: A novel deep multi-criteria col-
laborative filtering model for recommendation system[J]. Knowl.-
Based Syst. 187, 104811 (2020). https:// doi. org/ 10. 1016/j. knosys.
2019. 06. 019

 28. Naumov, M., Mudigere, D., Shi, H.J.M. et al.: Deep learning
recommendation model for personalization and recommendation
systems[J]. arXiv preprint arXiv: 1906. 00091, 2019. https:// doi.
org/ 10. 48550/ arXiv. 1906. 00091

 29. Tang, J., Wang, K.: Personalized top-n sequential recommenda-
tion via convolutional sequence embedding[C]//Proceedings of
the Eleventh ACM International Conference on Web Search and
Data Mining. 2018: 565-573. https:// doi. org/ 10. 1145/ 31596 52.
31596 56

 30. Li, J., Ren, P., Chen, Z. et al.: Neural attentive session-based
recommendation[C]//Proceedings of the 2017 ACM on Confer-
ence on Information and Knowledge Management. 2017: 1419-
1428. https:// doi. org/ 10. 48550/ arXiv. 1711. 04725

 31. Zhang, S., Tay, Y., Yao, L. et al.: Next item recommendation with
self-attentive metric learning. Thirty-Third AAAI Conference on
Artificial Intelligence. 2019, 9. https:// doi. org/ 10. 48550/ arXiv.
1808. 06414

 32. Wu, S., Tang, Y., Zhu, Y. et al.: Session-based recommendation
with graph neural networks. in Proceedings of the AAAI Confer-
ence on Artificial Intelligence. 2019, 33(01): 346-353. https:// doi.
org/ 10. 1609/ aaai. v33i01. 33013 46

 33. Fang, H., Zhang, D., Shu, Y., et al.: Deep learning for sequen-
tial recommendation: Algorithms, influential factors, and
evaluations[J]. ACM Trans. Inform. Syst. (TOIS) 39(1), 1–42
(2020). https:// doi. org/ 10. 1145/ 34267 23

 34. Hidasi, B., Karatzoglou, A., Baltrunas, L. et al.: Session-based
recommendations with recurrent neural networks[J]. arXiv pre-
print arXiv: 1511. 06939, 2015. https:// doi. org/ 10. 48550/ arXiv.
1511. 06939

 35. Hidasi, B., Quadrana, M., Karatzoglou, A. et al.: Parallel recur-
rent neural network architectures for feature-rich session-based
recommendations[C]//Proceedings of the 10th ACM conference
on recommender systems. 2016: 241-248. https:// doi. org/ 10. 1145/
29591 00. 29591 67

 36. Guo-zhen, L.I.U., Hong-long, C.: Convolutional Memory Graph
Collaborative Filtering. J. Beijing Univ. Posts Telecommun.,
44(3): 21. https:// journ al. bupt. edu. cn/ EN/ Y2021/ V44/ I3/ 21

 37. Huang, L., Fu, M., Li, F., et al.: A deep reinforcement learning
based long-term recommender system[J]. Knowl.-Based Syst.
213, 106706 (2021). https:// doi. org/ 10. 1016/j. knosys. 2020.
106706

 38. Liu, F., Tang, R., Li, X. et al.: Deep reinforcement learning based
recommendation with explicit user-item interactions modeling.
arXiv preprint arXiv: 1810. 12027, 2018. https:// doi. org/ 10. 48550/
arXiv. 1810. 12027

 39. Wang, H., Wang, N., Yeung, D.Y.: Collaborative deep learning for
recommender systems. in Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining.
2015: 1235-1244. https:// doi. org/ 10. 1145/ 27832 58. 27832 73

 40. Salakhutdinov, R., Mnih, A.: Probabilistic Matrix Factoriza-
tion, Advances in Neural Information Processing Systems 20
(NIPS’07), pp. 1257–1264, 2008

 41. Zhou, W., Li, J., Zhang, M. et al.: Deep learning modeling for
top-n recommendation with interests exploring. IEEE Access,
2018, 6: 51440-51455. https:// doi. org/ 10. 1109/ ACCESS. 2018.
28699 24

 42. Sivaramakrishnan, N., Subramaniyaswamy, V., Viloria, A., et al.:
A deep learning-based hybrid model for recommendation genera-
tion and ranking. Neural Comput. Appl. 33(17), 10719–10736
(2021). https:// doi. org/ 10. 1007/ s00521- 020- 04844-4

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/ACCESS.2018.2789866
https://doi.org/10.1016/j.knosys.2019.06.019
https://doi.org/10.1016/j.knosys.2019.06.019
http://arxiv.org/abs/1906.00091
https://doi.org/10.48550/arXiv.1906.00091
https://doi.org/10.48550/arXiv.1906.00091
https://doi.org/10.1145/3159652.3159656
https://doi.org/10.1145/3159652.3159656
https://doi.org/10.48550/arXiv.1711.04725
https://doi.org/10.48550/arXiv.1808.06414
https://doi.org/10.48550/arXiv.1808.06414
https://doi.org/10.1609/aaai.v33i01.3301346
https://doi.org/10.1609/aaai.v33i01.3301346
https://doi.org/10.1145/3426723
http://arxiv.org/abs/1511.06939
https://doi.org/10.48550/arXiv.1511.06939
https://doi.org/10.48550/arXiv.1511.06939
https://doi.org/10.1145/2959100.2959167
https://doi.org/10.1145/2959100.2959167
https://journal.bupt.edu.cn/EN/Y2021/V44/I3/21
https://doi.org/10.1016/j.knosys.2020.106706
https://doi.org/10.1016/j.knosys.2020.106706
http://arxiv.org/abs/1810.12027
https://doi.org/10.48550/arXiv.1810.12027
https://doi.org/10.48550/arXiv.1810.12027
https://doi.org/10.1145/2783258.2783273
https://doi.org/10.1109/ACCESS.2018.2869924
https://doi.org/10.1109/ACCESS.2018.2869924
https://doi.org/10.1007/s00521-020-04844-4

	A Deep Reinforcement Learning Real-Time Recommendation Model Based on Long and Short-Term Preference
	Abstract
	1 Introduction
	2 Related Works
	2.1 Traditional Recommendation Algorithm
	2.2 Deeping Learning-Based Recommendation Algorithm

	3 Preliminaries
	4 Methodology
	4.1 Proposed Model
	4.1.1 State Generation Module
	4.1.2 Actor–Critic Network

	4.2 Model Training
	4.2.1 Offline Mode
	4.2.2 Online Mode

	5 Experiments
	5.1 Data Set Description
	5.2 Evaluation Metrics
	5.3 Parameter Settings
	5.4 Compared Models
	5.5 Results and Analysis
	5.5.1 Offline Mode Experiment
	5.5.2 Online Mode Experiment

	6 Conclusion
	References

