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Abstract
With the development of Internet technology, the problem of information overload has increasingly attracted attention. 
Nowadays, the recommendation system with excellent performance in information retrieval and filtering would be widely 
used in the business field. However, most existing recommendation systems are considered a static process, during which 
recommendations for internet users are often based on pre-trained models. A major disadvantage of these static models 
is that they are incapable of simulating the interaction process between users and their systems. Moreover, most of these 
models only consider users’ real-time interests while ignoring their long-term preferences. This paper addresses the above-
mentioned issues and proposes a new recommendation model, DRR-Max, based on deep reinforcement learning (DRL). 
In the proposed framework, this paper adopted a state generation module specially designed to obtain users’ long-term and 
short-term preferences from user profiles and user history score item information. Next, Actor-Critical algorithm is used to 
simulate the real-time recommendation process.Finally, this paper uses offline and online methods to train the model. In the 
online mode, the network parameters were dynamically updated to simulate the interaction between the system and users in 
a real recommendation environment. Experimental results on the two publicly available data sets were used to demonstrate 
the effectiveness of our proposed model.

Keywords Recommendation system · Deep reinforcement learning · Online recommendation mode · Actor–critic · Long 
and short-term preference

1 Introduction

With the rapid development of network technology, the amount 
of information on the network has been growing exponentially. 
With increasing concerns about information overload on the 

Internet, it is critical for Internet companies to accurately and 
efficiently sift and recommend information for users based on 
their preferences. A promising solution to information overload 
is to build a high-performance recommender system. Recently, 
recommender systems are extensively researched and many suc-
cessful recommender systems have been developed in the busi-
ness world, including the GroupLens [1], the video streaming 
company Netflix [2], the online shopping website JD [3, 4] and 
many others. According to the research of Rostami [5], TOPSIS 
model is used to search suitable tourist sites for users using ABC 
algorithm according to user preferences.

Recommendation algorithms are the core part of a recom-
mendation system, aiming to provide users with accurate recom-
mendations. In general, recommendation algorithms are clas-
sified into traditional recommendation approaches and deep 
learning-based approaches. The clustering methods from the 
traditional recommendation approaches can recommend user’s 
items that are similar to their interests while effectively solve the 
data sparsity problem [6, 7]. The clustering-based methods has 
been widely used in recommendation algorithms, where matrix 
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decomposition techniques [8] have advantages in addressing 
the sparse matrix problem. The advancement in deep learning 
techniques has provided new design ideas for recommendation 
algorithms. For example, two popular reinforcement learning 
(RL) techniques, the value-based [9, 10] and the policy-based 
[3, 4, 11] have been applied in many recommendation systems.

Since the user interaction with a recommendation system 
is a continuous behavior, an ideal recommendation system 
should consider real-time preferences of users. However, 
most existing recommendation systems are pre-trained 
models and it is difficult for them to capture users’ real-
time interests. To address this problem, several RL-based 
approaches, such as POMDP [12] and Q-learning [13], have 
been developed to improve the quality of recommendations, 
and have been used in multiple recommender systems [3, 4, 
9–11]. However, these models are limited in accommodat-
ing complex recommendation scenarios. For example, the 
value-based RL recommendation systems [9, 10] are capable 
of accurately predicting the probability of a user’s subse-
quent actions, yet the efficiency of Q-value computation is 
decreased due to the large computational space. In contrast, 
the policy-based RL recommendation systems [3, 4, 11] take 
all action spaces as a continuous parameter vector to repre-
sent all actions, followed by the next recommendation and 
the update of Q-value. This policy-based approach can avoid 
large-scale Q-value computation but it cannot capture the 
interaction process between the user and the item accurately.

Most of the traditional methods are based on collabo-
rative filtering, which has the problems of cold start and 
excessive computing cost with the increase of data set size. 
The recommendation algorithm based on deep learning can 
effectively solve the problem of excessive computing cost 
by pre training the model, modeling in a nonlinear way, and 
encoding more complex abstractions as higher level data 
representations, but at the same time, the pre trained model 
can not effectively face the real changing recommendation 
environment. Therefore, this paper proposes to combine 
reinforcement learning with deep learning, use the excel-
lent decision-making ability of reinforcement learning, and 
simulate the real real-time recommendation environment.

In view of this, this paper aims to propose a deep rein-
forcement learning-based recommender system model 
(donated as DRR-Max), where Max refers to the maximum 
pooling layer used in this paper for feature extraction. Our 
DRR-Max model consists of two parts: a state generation 
module and an Actor–Critic algorithm [14]. The state gen-
eration module is well-designed in the DRR-Max model, 
the user item matrix is decomposed into user specific diag-
nosis matrix and item specific detection matrix through 
PMF, which solves the sparse matrix problem faced by tra-
ditional algorithms. In the process of interaction, the user’s 
long-term and short-term preferences are also taken into 
account to generate more accurate user state information. 

The generated state information of user’s is then put into the 
Actor–Critic algorithm, which is used to simulate the inter-
action process between the user and the recommender sys-
tem, solve the problem that previous models are static. The 
Actor–Critic algorithm is applied to predict the next action 
according to the user’s state and to evaluate the action. At 
the same time, the network parameters are updated dynami-
cally. Finally, both the online and offline experiments were 
designed to verify the efficiency of our DRR-Max model 
using the Book-crossing and the Amazon-b data sets.

The main contributions of this paper are as follows: (1) 
In order to solve the problem that the static model used by 
traditional algorithms can not adapt well to the dynamic 
interest changes of users, this paper adopts Actor–Critic 
algorithm, and the proposed DRR-Max model regards rec-
ommendation as a continuous process, simulating the real 
gradual recommendation environment. (2) A new state gen-
eration module is designed to efficiently simulate the inter-
action between users and recommendation items. (3) The 
DRR-Max model is tested using two real-world public data 
sets, and the results of the comparison with the five tradi-
tional models suggested that our proposed model had better 
performance regarding the effectiveness of recommendation.

The rest of the article is organized as follows: Sect. 2 
briefly describes the recent development of recommender 
systems. The introduction of the deep learning in recom-
mender systems is described in Sect. 3. Section 4 describes 
the details of our proposed model and the procedures of 
training the model. Experimental results on two public data-
bases and comparison with existing models are analyzed 
in Sect. 5. Finally, Sect. 6 draws conclusions of the current 
study and give directions of future work.

2  Related Works

This section will discuss the traditional recommenda-
tion algorithms and deep-learning-based recommendation 
algorithms.

2.1  Traditional Recommendation Algorithm

Traditional recommendation algorithm consists of content-
based methods, collaborative filtering methods, and hybrid 
recommendation methods. Content-based methods use tar-
get-related or user-related information or user’s operation 
behavior on the target to construct a recommendation model, 
which generally rely on the user’s own behaviors without 
involving other users’ behaviors [1, 15]. Collaborative fil-
tering algorithm plays a very important role in the existing 
recommendation algorithm. They aim to detect a group of 
users with similar tastes and preferences to the target user, 
and to recommend items favored by other users in the group 
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to the current user. The first collaborative filtering recom-
mendation method proposed by Goldberg [16] can filter out 
a set of items of interest for a specific user. Later, a collabo-
rative filtering recommendation algorithm called Dynamic 
Decay Collaborative Filtering (DDCF) proposed by Chen 
et al. [17] combines the memory curve with collaborative 
filtering and considers the user’s long and short-term prefer-
ences. Liao and Li [18] adopted a self-constructed clustering 
algorithm to improve the clustering computation efficiency 
in collaborative filtering recommendation method without 
decreasing the quality of algorithm. In additional, fuzzy 
C-means clustering method [19], Top-N method [20], and 
other techniques [21] were designed to improve the accuracy 
of the collaborative filtering recommendation algorithms.

A real-world recommendation environment is often com-
plex, where a single recommendation approach is often not 
competent in achieving optimal results. Hybrid recommenda-
tion algorithms take advantage of multiple recommendation 
approaches in obtaining better quality of recommendation. 
Tian [22] et al, a hybrid recommender system was designed 
to recommend books of most interest to users from a large 
number of candidates have adopted a user rating matrix and 
clustering method in addressing the sparse matrix problem 
[22]. Cai et al. [23] proposed a recommendation system based 
on multi-objective optimization to solve the problem of dif-
ferent needs of various users. These hybrid recommendation 
algorithms [22, 23] improve performance of the recommenda-
tion to a certain extent.

2.2  Deeping Learning‑Based Recommendation 
Algorithm

Nowadays, deep learning-based recommendation algorithms 
have become the focus of current research due to the excel-
lent performance of deep learning technique in handling 
complex tasks. Zhang et al. [24] summarized the latest 
research of recommendation systems based on deep learn-
ing, classify deep learning recommendation systems, includ-
ing recommendation model and techniques, as well as gives 
the future research direction. Forouzandeh et al. [25] pro-
posed a new food recommendation system, which divided 
the recommendation into two stages. In the first stage, graph-
ical clustering was used, and in the second stage, a method 
based on deep learning was used to cluster users and food 
to overcome the shortcomings of the previous system, such 
as cold start and food composition problems.

Among all deep learning-based algorithms, several algorithms 
adopt traditional collaborative filtering to improve the quality of 
recommendation [26, 27]. Nassar et al. [27] proposed a deep 
learning-based multi-criteria collaborative filtering model. In this 
hybrid model, the features of users and items are first obtained, 
and then input into a deep neural network to predict standard 
scores. These standard scores will further be put into the whole 

ranking deep neural network to get the overall score ranking. 
Maxim et al. [28] designed a new parallel scheme that enabled 
efficient computation of fully connected layers in learning-based 
recommendation model.

For temporal recommendation systems, there are some 
successful models based on deep learning. Tang and Wang 
[29] combines convolutional sequence embedding model 
with Top-N sequential recommendation as a way for tem-
poral recommendation. Li et al. [30] designed a new neural 
attention recommender network to consider the sequential 
behavior of user in current session. Zhang et al. [31] intro-
duced attention mechanism into the sequence-sense rec-
ommendation model to represent user’s temporal interest. 
Wu et al. [32] constructed a session-based graph neural 
network recommendation model (SR-GNN). In SR-GNN, 
session sequences are modeled as image-structured data, 
and the GNN can capture complex transformation of rec-
ommendation items. The recent review of temporal recom-
mendation models and algorithms can be found in [33].

There are also several successful deep learning-based 
models in temporal recommendation systems. Tang and 
Wang [29] combined convolutional sequence embedding 
model with Top-N sequential recommendation as a way 
for temporal recommendation. Li et al. [30] designed a new 
neural attention recommender network that considered the 
sequential behavior of user in current session. Zhang et al. 
[31] introduced attention mechanism into the sequence-sense 
recommendation model that represented user’s temporal 
interest. Wu et al. [32] constructed a session-based graph 
neural network recommendation model (SR-GNN). In SR-
GNN, session sequences are modeled as image-structured 
data, and the graph neural network can capture complex 
transformation of recommendation items. Fang et al. [33] 
summarizes recent recommendation models and algorithms 
based on chronological order.

To avoid the problem of only focusing on short-term 
session data and ignoring the long-term interests of users, 
a recent study proposed a recommendation model based 
on improved recurrent neural network [34]. The authors of 
this study subsequently implemented a variety of parallel 
recurrent neural networks to model the session graph [35]. 
For the vector representation of users and recommendation 
items, Liu and Chen [36] developed an end-to-end graph 
neural network with memory units. In this graph neural 
network, the gated recurrent unit was introduced into to 
solve the information loss between high-order connected 
nodes. Then, convolutional neural networks are adopted 
to merge feature vectors between network output layers to 
obtain user preferences at different stages.

In recent years, deep RL techniques have promoted the 
rapid development of commendation systems. Huang et al. 
[37] treated the recommendation process as a Markov deci-
sion process (MDP) and used the recurrent neural network 



 International Journal of Computational Intelligence Systems            (2023) 16:4 

1 3

    4  Page 4 of 14

to simulate the interaction between the recommendation 
system and the user. They proposed a top-N interactive rec-
ommender system to maximize long-term recommendation 
accuracy. Zheng et al. [9] used a deep Q-learning-based rec-
ommendation framework to improve the real-time recom-
mendation of news. Liu et al. [38] proposed a deep RL-based 
recommendation framework, in which the recommendation 
process was considered as a sequential decision-making 
process. Combined with the Actor–Critic algorithm, the 
framework simulates the interaction between the user and the 
environment. Zhao et al. [3] designed an online user-agent 
interaction environment simulator, where the model can be 
trained and parameters can be evaluated in an offline mode to 
reduce the train data scale and the running time of the model. 
In a subsequent study [4], the authors further introduced a 
deep RL-based page recommendation framework to provide 
real-time feedback optimization items in the page.

3  Preliminaries

Due to its powerful decision-making capability, RL has 
been widely used in many fields. RL simulates the inter-
action between the agent and the environment, where the 
agent selects the action and the environment provides the 
response to the agent and changes to the new state, ena-
bling RL to learn from interactions. Through the continu-
ally interactions, the agent attempts to obtain the best total 
rewards. The decision process of RL can be considered as 
a Markov decision process (MDP). MDP can be defined 
as (S,A,P,R, �) . Where S is the state space, A is the action 
space, P is the state transfer function, R is the return func-
tion, and � is the discount factor. The goal of the agent 
in MDP is to find an optimal strategy to maximize the 
expected cumulative rewards under any state, or equiva-
lently maximize the cumulative expected reward for an 
action in any state.

According to the above description, we can regard the 
recommendation process of the recommendation system 
as a continuous decision-making process. When interact-
ing with the recommender system, the user can be treated 
as the environment and the recommender system is con-
sidered as the agent, which maximizes the cumulative 
rewards of the recommender process. Therefore, the whole 
recommendation process can be regarded as a MDP pro-
cess which is defined as follows.

• State space S : State st = {s1
t
, s2

t
,… , sN

t
} ∈ S is defined as 

the top N items that the user interacts with between time 
t. Here, st is arranged in chronological order.

• Action space A : Action at = {a1
t
, a2

t
,… , aK

t
} ∈ A is the 

list of selectable actions based on the user’s state st at 
time t, and K represents the recommended items to the 
user each time number of items.

• State transition P : P is a probability function. 
P(st+1 min st, at) represents the probability of transition 
from state st to st+1 in the case of state st and action at . 
Suppose P(st+1 ∣ st, at,… , s1, a1) = P(st+1 ∣ st, at).

• Reward R : In state st , the recommender system will take 
action at to recommend a list of items for the user, and 
the user will give feedback on the recommendation list. 
The agent will receive different rewards r(st, at) for dif-
ferent actions made by the user on the recommendation 
list.

• Discount factor � : � ∈[0,1] is defined as a strategy that 
we use to measure rewards. When �=0, we only consider 
immediate rewards and ignore long-term rewards. Con-
versely, when �=1, we regard immediate and long-term 
rewards as equally important.

In the recommendation model proposed in this paper, the 
action represents a continuous vector of parameters instead 
of a single item or a group of items. The vector is subjected 
to an inner product operation with the item feature matrix, 
which in turn yields the ranking of the candidate items and 
recommends the top N items to the user. The user receives the 
recommended items from the system and provides feedback 
to the recommendation system, based on which the user status 
is updated and the recommendation system receives rewards.

4  Methodology

In this section, we first introduce the model in detail, and 
elaborated the training process of the model.

4.1  Proposed Model

4.1.1  State Generation Module

The state generation module generates the current state of the 
user based on user feature information and user’s historical 
interaction item feature matrix. An efficient state generation 
network not only generates high quality state information, but 
also helps the Actor–Critic network perform action generation.

Figure 1 gives the structure of state generation module. 
As shown in Fig. 1, the user feature matrix and the feature 
matrix of the user’s first N interaction items at moment t are 
the input data and the user’s current state is the output of 
the module. Among them, this paper decomposes the prob-
ability matrix of the test data set to obtain the user char-
acteristic matrix and project characteristic matrix with the 
scale of N , and we express the user characteristic matrix as: 
U = {u1, u2, ..., un} , and the project specific diagnosis matrix 
as: I = {i1, i2, ..., in} . There are three parts in state genera-
tion module: the first one is the user feature matrix u on the 
left; the second one is the matrix information of the feature 
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matrix of the N items after the maximum pooling layer on 
the right; the last one is the matrix multiplication operation 
of the left and right parts in the middle. Therefore, the model 
not only obtains information about the user’s characteris-
tics, but also extracts information about the user’s historical 
behavior. Meanwhile, the user’s information and the behav-
ioral information can be interacted with each other to obtain 
a more accurate user’s current state. The state generation 
module can be represented in Eqs. (1) and (2):

where ⊗ denotes the product of elements, ia is the special 
diagnosis matrix of item a, and g(⋅) denotes the max-pooling 
layer. Both user u and item i have dimension k, the dimen-
sion of st is 3k.

4.1.2  Actor–Critic Network

The current state of the user is obtained by the state gen-
eration module and used as input of the Actor–Critic net-
work, which generates action information and thus a list of 
item recommendations for the user. Actor–critic algorithm 
combines the characteristics of strategy-based and value-
based RL algorithms. Actor is responsible for generating 
actions and interacting with the user based on the state, 
and Critic is responsible for evaluating the action.

The actor network, known as a policy network, is used to 
generate actions based on the current state of the user. The 
actor network in this paper is shown in the left part of Fig. 2. 
Its input is the state st , and the output is the user’s action 
at at time t. Specifically, the state st is transformed into the 
action at = ��(st) after two ReLU layers and a Tanh layer. 

(1)st = [u, u⊗ {g(ia ∣ a = 1, ..., n)}, {g(ia ∣ a = 1, ..., n)}]

(2)g(ia) =max(ia) ∣ a = 1, ..., n

From the previous section, we know that the dimension of 
s is 3 ∗ k , and the action at ∈ R1×k . Through the action, we 
can perform a matrix product operation with the item space 
to obtain the ranking of the items, as shown in Eq. (3):

where it represents the recommended project space. For the 
final list of recommendation, we take the top N from the 
ranking. In this process, we use the � − greedy strategy.

The critic network shown in the right part of Fig. 2, 
which is the key part of the whole network. The critic 
network is designed as an approximator to learn the action-
value function Q(st, at) , which is used to determine whether 
the action at generated by the actor network matches the 
state st that the user is currently in. Then, according to 
the action value function, the actor–critic network updates 
the network parameters in the direction of improving the 
accuracy of the prediction. It will be helpful to adapt to the 
state that user is in during subsequent action generation.

Many applications in RL use the most action-value 
function Q∗(st, at) . Its optimal strategy achieves the maxi-
mum expected rewards, and the corresponding Bellman 
equation is described as follows:

In the real environment the whole action space A needs to 
be calculated to select the optimal action at+1 . It is impracti-
cal to get the best action by computing Eq. (4), because the 
action space of the real environment is usually huge. So, the 
critic network in our proposed model uses a definite action 
a, which is provide by the actor network. This way can avoid 
the calculation cost of the entire action space A in Eq. (4). 
Equation (5) is the Q-value evaluation function that we are 
adopted in this paper:

(3)rankingI = ita
T
t

(4)Q∗(st, at) = �st+1
[rt + �maxat+1Q

∗(st+1, at+1) ∣ st, at]

Fig. 1  State generation network
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where Q�(st, at) represents the evaluation function of the 
pair of state-action (st, at) , critic network, which also denote 
the match degree of st and at . Critic network evaluates the 
state s generated by the state generation module and the 
action a generated by the actor network, and then outputs 
Q-value. According to the Q-value, network parameters 
can be updated to improving the accuracy of action a, i.e., 
increasing the value of Q�(st, at) . We update the Actor net-
work parameters by Eq. (6), and we use the sampling policy 
gradient to execute the update operation.

In Eq. (6), J(��) is the expected value of all Q-values that 
adhere to the �� strategy. In the process of updating the critic 
network, we use a mini-batch strategy and a time difference 
learning approach. Equation (7) defines the mean squared 
error, and yi is shown in Eq. (8).

(5)Q�(st, at) = �st+1
[rt + �Q�(st+1, at+1) ∣ st, at]

(6)∇�J(��) ≈
1

N

∑

t

∇aQ�(s, a) ∣s=st ,a=∇��� (st)
∇���(s) ∣s=st

In the above formula, N is the batch size, �′ is a parameter 
of the Actor network and �′ is a parameter of the Critic 
network.

4.2  Model Training

In this section, inspired by previous studies [4, 9], we per-
formed the work about the model training in offline and 
online modes separately. The offline mode is similar to a 
traditional recommender system, which uses a pre-trained 
model to make recommendations for the user. The online 
mode adopts dynamically updated network parameters to 
simulate the interaction between the system and users in a 
real recommendation environment.

(7)L =
1

N

∑

i

(yi − Q�(si, ai))
2

(8)yi = ri + �Q�� (si+1,��� (si+1))

Algorithm 1 State Generation Module
Input: User embeddings U of size w×1 and Items embeddings I of size w×N .
Output: User state embeddings s.
1: right = maxpool(I)
2: middle = U∗right
3: s = concat(U , middle, right)

Fig. 2  Actor-critic network
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4.2.1  Offline Mode

As mentioned above, the offline mode uses a traditional 
training and testing model. The process of offline training 
consists of the two steps. First, we use the state generation 
module in our proposed model to generate the current state 
of the user. Then, the actor–critic network will be used to 
get the best result.

Algorithm 1 is the pseudocode of the state generation 
module. This paper uses PMF [8] to randomly generate 

initialized user feature matrix U and item feature matrix 
I as the input of the state generation module. Where 
I = {i1, i2, ..., in} , U = {u1, u2, ..., un} , n is the dimension of 
the characteristic matrix. Through line 1, we can get the 
obtain information on the characteristics of I . In line 2, get 
the user and project interaction information. Merge the user 
profile information with the above two types of information 
by line 3. When the Algorithm 1 is finished, we will get the 
current state of the user.

Algorithm 2 Offine Train Mode
Data: Actor learning rate ηa, critic learning rate ηc, discount factor λ, batch
size B, recommend window size K, user space U , item space I.
1: Initialize actor network πθ and critic network Qω with random weights θ

add ω ;
2: Initialize the target network π

′
and Q

′
with weights θ

′ ← θ and ω
′ ← ω ;

3: Initialize replay buffer D;
4: for j in U do
5: Get user j historical recommended items Ij ;
6: Discard users with less than N reviews ;
7: if length of Ij < N then
8: continue;
9: end if

10: Get the current state st of j by Algorithm 1;
11: Get recommended actions at through the actor network by policy at =

πθ(st) ;
12: Calculate recommended item Ik according to equation (3) ;
13: for i in Ik do
14: if User ratings for i then
15: Reward rt=R(st, at);
16: else
17: Reward rt=PMF (i, j);
18: end if
19: end for
20: Through the critic network get the Qω(st, at) ;
21: Observe new state st+1 by Algorithm 1;
22: Store transition (st, at, rt, st+1) in D;
23: Sample a minibatch of N transitions (si, ai, ri, si+1) in D with priori-

tized experience replay sampling technique;
24: Set yi by equation (8) ;
25: Update the critic network by minimizing the loss: L = 1/N

∑
i(yi −

Qω(si, ai))2

26: Update the actor network using the sampled policy gradient: ∇θ(πθ) ≈
1/N

∑
t ∇aQω(s, a) |s=st,a=∇θπθ(st) ∇θπθ(s) |s=st ;

27: Update the target networks: θ
′ ← τθ+ (1− τ)θ

′
ω

′ ← τω+ (1− τ)ω
′

return θ, ω ;
28: end for
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Once we get the current state of the user, we will 
train the model by the Actor–Critic network in offline 
mode. The training process of the actor–critic network is 
described in Algorithm 2. The whole training procedure 
consists of three phases, which are the action generation, 
evaluation generation and model updating, respectively. 
The description of Algorithm  2 is introduced in the 
following.

The training process starts with random initialization of 
the network weights and the buffer D (lines 1 ∼3). The main 
loop of the Algorithm 2 is shown in lines 4 ∼28. In the action 
generation phase (lines 5 ∼11), we set a minimum number of 
evaluations N for user selection (lines 6 ∼ 9) to obtain enough 
available information. After obtaining the user feature 
matrix and the first N historical evaluation feature matrices, 
the user’s state matrix st at the current moment can be obtain 
by Algorithm 1(line 10). The state matrix st , is inputted to 
the actor network to obtain the user’s current action at . 
Each loop, we select a userjfrom the user spaceU

to recommend services.
 Then, the recommended actions at , 

a
t
∈ R

1×k, kis the length of item spaceI. is gotten by the actor net-
work applying the policy (line 11).

In the second stage (lines 12∼23), we use the Critic net-
work to calculate the optimal action value function Q�(st, at) . 
First, we take the top K items, which sorted by the scores 
obtained through Eq. (3), as the recommendation list (line 
12). Next, the reward will be calculated (lines 13∼19). If user 
rates an item in the recommendation list, the reward function 
is based on the user’s evaluation score. If user does not rate, 
the PMF predicts the score as a reward. Based on the action 
at at time t, and the state matrix st , the optimal action value 
function Q�(st, at) is calculated through the Critic network 
(line 20). The user’s next state st+1 is updated based on the 
reward, and the quaternion (st, at, rt, st+1) is stored in the 
cache D (lines 21∼23).

In the third stage (lines 24∼27), that is mode updating, the 
iterative target value is obtained by Eq. (8), and update the 
Critic and Actor networks according to Eqs. (7) and (6) to 

Fig. 3  Online mode
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minimize errors (lines 24∼26). Finally, the target networks 
parameters � and � are updated.

4.2.2  Online Mode

Although offline training model is the same as the traditional 
training, it does not exactly match the real recommendation 
scenarios in reality and cannot capture the changes in users’ 
interests. Thus, we designs an online recommendation model 
to update the network synchronously during the recommen-
dation process. The online model employs an update strategy 
shown in Fig. 3, which uses the users’ historical comment 
data sorted by timestamps, and makes recommendations in 
chronological order to simulate users’ online patterns.

The online training mode is made up of the recommenda-
tion stage and the training stage. In the project recommenda-
tion stage, the system recommends projects for users accord-
ing to their interests and preferences. Once the user feedback 
is obtained, the next recommendation will be made. After 
finishing several recommendation processes, a certain num-
ber of user feedback information will be obtained, and then 
network parameters are updated through the training step. 
Therefore, the online training mode is able to simulate the 
real recommendation environment to a certain extent.

5  Experiments

To determine the validity of DRR-MAX model, we designed 
two experiments including offline and online recommenda-
tion modes. Experimental validation was performed on two 
publicly available data sets: Book-crossing and Amazon-
b. In the offline mode experiment, we adopt three evalu-
ation indicators, including recall rating, precision, and F1 
to evaluate the proposed model. Meanwhile, we compared 
our model with other five models—CDL [39], CMF, PMF 
[40], DLMR–DAE [41], and HBSADE [42]. For the online 
mode experiment, we used the reward function to evaluate 
the effect of recommendation. All algorithms and experi-
ments were designed and implemented using Python 3.8 and 
Torch 1.9.1 in a computer with an i7-10875 H CPU and 
RTX3060 GPU.

5.1  Data Set Description

The description of two public real data sets are introduces 
in the following: 

(1) Book-crossing: The Book-crossing data set is a set of 
rating data sets for books, which contains 1,149,780 
ratings for 271,379 books from 278,858 users. The 
rating of every book ranges from 1 to 10. This data 

set contains three columns of data, which are user ID, 
book ISBN and user rating, and each row represents the 
user’s rating for a certain book.

(2) Amazon-b: The Amazon-b data set is a rating data 
set for books in the Amazon data set, which con-
tains 1,048,576 rating information for 33,122 books 
by 705,955 users. The value of rating is a number 
between1 and5. The difference between this data set 
and the Book-crossing data set is that there is an addi-
tional set of timestamp information to record the user’s 
rating time, expect for the user ID, the book ID and the 
rating.

From the number of users, books and ratings in both data 
sets, it is easy to see that both data sets are highly sparse. 
To improve computing efficiency, the rating data has been 
pre-processed and the rating values have been uniformly 
normalized to a range between -1 and 1. At the same time, 
we divided the data set into the training set and test set with 
an 8:2 ratio.

5.2  Evaluation Metrics

The main purpose of this recommender system is to gen-
erate top-N recommended items for users. Therefore, we 
use precision and recall, which are donated as Precision@N 
and Recall@N, respectively, to evaluate the recommendation 
quality of the recommender system. In our model, we recom-
mend N items for a user at a given moment in time, and these 
two metrics are defined in Eqs. (9) and (10).

In the above equations, TP represents the number of positive 
ratings for users in the predicted items, FN is the number 
of incorrect prediction results, FP denotes the number of 
negative cases in user evaluation, thus TP + FP denotes the 
number of user evaluation items and TP + FN denotes the 
number of recommended items at a time N.

The F1 score is also used to assess the balance between 
Recall@N and Precision@N. The formula for calculating F1 
is described as follows:

While for the online recommendation model simulated, we 
use the reward function Reward to evaluate the recommen-
dation effect. Due to the limited number of user evaluations, 
we divide the reward function into two cases whether the 

(9)Precision@N =
TP

TP + FP

(10)Recall@N =
TP

TP + FN

(11)F1 = 2 ∗
Precision@N ∗ Recall@N

Precision@N + Recall@N
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recommended item is rated by users. The two reward func-
tions are defined in Eqs. (12) and (13), respectively. When 
the recommendation item has a user rating, the reward value 
is the user rating regularized score, which is assumed a num-
ber between 1 and 5. When the recommended item is not 
rated by the user, we adopt the product of the feature matri-
ces simulated by PMF of the user and the item to obtain the 
predicted rating of user, and then take the predicted rating 
as the reward value.

5.3  Parameter Settings

For the two data sets, a recommended item is considered as 
a successful recommendation, when the user rating of it is 
above 0.5. Before training, a 200-dimensional feature matrix 
of users and items are first generated randomly using PMF. 
During the recommendation process, we remove the recom-
mended successful items from the candidate set each time 
to avoid recommending duplicate items. We set the learning 
rate of the actor network to 0.0001, the critic network to 
0.001, the discount rate � to 0.9, and the batch size to 64. We 
also use the Adam optimizer to update the network param-
eters and L2 paradigm regularization to prevent overfitting.

5.4  Compared Models

We compared our model with several representative meth-
ods, including CDL [39], CMF, PMF [40], DLMR–DAE 
[41] and HBSADE [42], to determine the effectiveness of 
our model. The details of these five models are as follows.

• CDL: CDL is a tightly coupled hybrid recommendation 
algorithm, which combines the stack autoencoder SDAE 
and CTR through a Bayesian graph.

• CMF: CMF is a basic cross-domain recommendation 
method, which performs cross-domain recommendation 
by sharing factors among users and decomposing the 
cross-domain joint scoring matrix.

• PMF: PMF was proposed by [40], which uses the SVD 
method to decompose the matrix, and the decomposition 
process to ignore zero values.

• DLMR–DAE: This model obtains information by user 
reviews, and generates recommendation list by convolu-
tion matrix decomposition.

• HBSADE: HABASE is a hybrid Bayesian stacking 
automatic de-encoder model, which obtains contextual 
information through the MF method, identifies user’s 

(12)Reward (rt) =
1

2
(ratei,j − 3)

(13)Reward (rt) = PMF(i, j)

interests, and then makes recommendations based on 
user interests.

5.5  Results and Analysis

5.5.1  Offline Mode Experiment

From Tables 1, 2, 3, 4, the comparison results on two real 
public data sets are given. For every model considered in this 
paper, we can find their precision and recall values. From the 

Table 1  Precision for Book-crossing data set

Algorithm N=5 N=10 N=15 N=20 N=25

PMF 0.107 0.098 0.089 0.085 0.078
CMF 0.185 0.147 0.137 0.124 0.117
CDL 0.190 0.175 0.113 0.123 0.112
DLMR–DAE 0.198 0.195 0.186 0.157 0.158
HBSADE 0.283 0.253 0.256 0.237 0.232
DRR-Max 0.413 0.356 0.321 0.281 0.264

Table 2  Precision for Amazon-b data set

Algorithm N=5 N=10 N=15 N=20 N=25

PMF 0.103 0.093 0.082 0.071 0.069
CMF 0.183 0.164 0.132 0.122 0.116
CDL 0.193 0.186 0.124 0.119 0.118
DLMR–DAE 0.295 0.276 0.253 0.234 0.234
HBSADE 0.312 0.297 0.272 0.258 0.258
DRR-Max 0.673 0.548 0.504 0.504 0.518

Table 3  Recall for Book-crossing data set

Algorithm N=5 N=10 N=15 N=20 N=25

PMF 0.105 0.114 0.123 0.161 0.134
CMF 0.157 0.168 0.164 0.191 0.197
CDL 0.156 0.177 0.195 0.209 0.217
DLMR–DAE 0.305 0.327 0.344 0.354 0.353
HBSADE 0.327 0.349 0.364 0.382 0.371
DRR-Max 0.257 0.388 0.460 0.481 0.522

Table 4  Recall for Amazon-b data set

Algorithm N=5 N=10 N=15 N=20 N=25

PMF 0.109 0.124 0.138 0.151 0.152
CMF 0.203 0.211 0.223 0.226 0.226
CDL 0.193 0.209 0.224 0.236 0.238
DLMR–DAE 0.318 0.352 0.376 0.381 0.382
HBSADE 0.341 0.376 0.382 0.398 0.399
DRR-Max 0.510 0.654 0.698 0.701 0.731
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experimental results, we can draw the following conclusions. 
First, the recall and precision of the PMF model is lowest 
among of these models. Second, CDL improves recommen-
dation performance by introducing a denoising self-encoder, 
making its recommendation accuracy slightly higher than 
the PMF. Then, compared with PMF and CDL, CMF does 
not improve the recommendation accuracy. Although CMF 
incorporates a composite deep learning CNN model in cap-
turing the correlation between the user’s pre and post behav-
ioral information, it has limited effect on improving accu-
racy. Next, the DLMR–DAE outperforms the PMF, CDL 
and CMF methods by exploring the fixed interests of users. 
While for HBASE, it is more effective than DLMR–DAE. 

This is due to that the HBASE model is enhanced by a 
hybrid Bayesian overlay auto-decoder model. Finally, our 
proposed DRR-Max model generally outperforms other five 
models, expect that the only one results of Recall@5 was 
slightly lower than the DLMR–DAE and HABASE.

Tables 5 and 6 show the values of F1 all the models for 
different recommended list lengths. The results show that 
the DRR-Max model is better than other five models, such 
as CDL, CMF, PMF, DLMR–DAE and HBSADE.

Figure 4 shows the precision metrics of the PMF, CMF, 
CDL, DLMR–DAE, HBSADE and DRR-Max models on 
the Book-crossing data set and Amazon-b data set. The 
DRR-Max has the highest precision values on the two data 
sets among all models. As shown in Fig. 4, the recommen-
dation accuracy tends to decrease as the length of recom-
mendation list increases. At the same time, the accuracy 
of small batch recommendations is generally higher than 
that of large batch recommendations.

Figure 5 shows the results of taking recall as the metric 
on the Book- crossing data set and Amazon-b data set. 
The DDR-max model have the larger recall values than 
other five models except that the length of recommended 
list equals 5. Unlike the precision in Fig. 4, it can be seen 
that as the length of recommended list become large, the 
recall of the model rises.

Figure 6 shows the results on the Book-crossing and 
Amazon-b data sets, respectively, when the evaluation 
metric is F1. We can see from Fig. 6 that the value of F1 
decreases when the commendation list N  increases.

For three metrics used in this paper, we find that they 
have similar curves of change when the length of com-
mendation list increases. Meanwhile, as shown in Figs. 4 
to 6, the proposed model DDR-Max outperforms other 
five models.

Table 5  F1 for Book-crossing data set

Algorithm N=5 N=10 N=15 N=20 N=25

PMF 0.106 0.105 0.103 0.111 0.099
CMF 0.169 0.159 0.149 0.150 0.147
CDL 0.171 0.176 0.143 0.155 0.148
DLMR–DAE 0.240 0.244 0.241 0.218 0.218
HBSADE 0.303 0.293 0.300 0.293 0.285
DRR-Max 0.317 0.371 0.378 0.354 0.350

Table 6  F1 for Amazon-b data set

Algorithm N=5 N=10 N=15 N=20 N=25

PMF 0.105 0.106 0.102 0.097 0.095
CMF 0.192 0.185 0.166 0.158 0.153
CDL 0.193 0.197 0.160 0.158 0.157
DLMR–DAE 0.306 0.309 0.302 0.290 0.290
HBSADE 0.326 0.331 0.318 0.313 0.313
DRR-Max 0.580 0.596 0.585 0.586 0.606

Fig. 4  Procession for Book-crossing and Amazon-b data sets
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5.5.2  Online Mode Experiment

For the online experiments on Book-crossing and Ama-
zon-b, we use the reward function Reward as the evalua-
tion function. At the same time, we also use different sizes 
of the recommended items list to evaluate the proposed 
model. Here, we do not compare our proposed model with 
other models, due to the simulating online experiment. 
The experiment results are given in Table 7. As shown in 
Table 7, the reward values obtained are around 0.5 in both 

data sets, when the length of recommended list has differ-
ent values. The results reveal that our proposed model is 
stable as well as effective in the simulated environment of 
real-time user-system interaction.

6  Conclusion

In this paper, we propose a recommendation model 
based on deep reinforcement learning (DRR-Max). The 
specially designed state generation module can obtain 
the long-term and short-term interest changes of users 
according to the user’s history interaction projects, and 
generate the current state information of users at the same 
time. At the same time, we designed two kinds of train-
ing experiments, offline and online. Finally, we evalu-
ated our DRR-Max models on two real public data sets: 

Fig. 5  Recall for Book-crossing and Amazon-b data sets

Fig. 6  F1 for Book-crossing and Amazon-b data sets

Table 7  Reward for online mode

Data set N=5 N=10 N=15 N=20 N=25

Book-crossing 0.5045 0.5029 0.5023 0.5017 0.5015
Amazon-b 0.4983 0.4990 0.4999 0.5010 0.5013



International Journal of Computational Intelligence Systems            (2023) 16:4  

1 3

Page 13 of 14     4 

Book-crossing and Amazon-b. Compared with PMF, CDL, 
CMF, DLMR–DAE and HBSADE models, DRR-Max 
model shows good performance in precision, recall and 
F1. The proposed DRR-Max model also has the advantage 
of updating the network in real-time when it is deployed.

Future works should focus on extracting multi-dimen-
sion information of recommendation items and the users. 
This information can be used to further classify recom-
mendation items and the users. In additional, more detailed 
feature information also needs to be obtained to provide 
the more accurate recommendations.
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