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Abstract
With the wide adoption of cloud computing across technology industries and research institutions, an ever-growing interest 
in cloud orchestration frameworks has emerged over the past few years. These orchestration frameworks enable the auto-
mated provisioning and decommissioning of cloud applications in a timely and efficient manner, but they offer limited or no 
support for application management. While management functionalities, such as configuring, monitoring and scaling single 
components, can be directly covered by cloud providers and configuration management tools, holistic management features, 
such as backing up, testing and updating multiple components, cannot be automated using these approaches. In this paper, 
we propose a concept to automatically generate executable holistic management workflows based on the TOSCA standard. 
The practical feasibility of the approach is validated through a prototype implementation and a case study.

Keywords  Cloud management automation · Holistic application management · Policies · TOSCA · BPMN

Introduction

As cloud growth has accelerated over the course of the past 
few years, more and more applications are deployed on a 
cloud environment with the result of a larger distribution 
of services across the internet [13]. In the aftermath of the 
COVID-19 pandemic, to remain competitive in today’s 
increasingly digital world, organisations have to make stra-
tegic decisions about their cloud migration, cloud architec-
ture, effective tooling and cost management [16]. Despite 
a wide variety of cloud providers and services [14], an 
intrinsic complexity resides in application deployment and 
management which is considered to be a draining, error-
prone and time-consuming process [6]. In this respect, cloud 

orchestration tools have increased their popularity in recent 
years, becoming a main topic for cloud research [2, 5].

Cloud orchestration regards various complex operations 
to select, configure, deploy, monitor and control resources or 
services over different cloud solutions in an automated fash-
ion [32]. There exist different approaches to cloud orchestra-
tion [4], ranging from commercial orchestration platforms 
to cloud-agnostic tools [11, 21, 22]. Nonetheless, they can 
vary greatly in configuration languages, complexity and 
compatibility, posing great challenges for those who lack 
cloud-specific skills or knowledge on how to efficiently use 
the available set of automation tools.

While all these approaches fully support deployment 
automation, they only provide limited or no management 
automation. In accordance with current practice, manage-
ment features are integrated as infrastructure services result-
ing in additional management code, human intervention and 
vendor lock-in [28]. Furthermore, holistic management func-
tionalities affecting multiple components of an application, 
e.g., backing up the application state, testing and/or updating 
application components, are mostly unsupported. Especially 
in DevOps scenarios, where applications change frequently, 
a complete lack of holistic management can rapidly lead to 
faulty deployments. Therefore, modern orchestration frame-
works should tackle these issues while providing their man-
agement tasks.
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In this paper, we extend the work presented in Calcaterra 
and Tomarchio [7] where we proposed a concept for the 
automated generation of holistic management workflows 
based on TOSCA application models and policies. In this 
work, we carry out a more in-depth analysis of the approach 
and discuss a brand new management operation. In this 
regard, we improve our previous work by providing inte-
gration with update mechanisms for a variety of application 
components. The new management feature is supported via 
new interface types, node types and policy types included 
in our TOSCA extension. We also revisited the case study to 
validate the additional management operation.

The remainder of the paper is structured as follows. 
“Background” provides a background of the concepts used 
in this work. “Motivation” motivates the need for holistic 
management automation. “Conceptual Overview” pre-
sents the core ideas for management automation. “Policy-
Based Application Management” delves into the proposed 
approach to automatically generate management workflows 
from TOSCA-based application models. “Prototype Valida-
tion” and “Case Study” discuss a prototype implementation 
and a case-study showing the potential of the proposed idea, 
respectively. Related work is addressed in “Related Work”. 
Concluding remarks and future directions are debated in 
“Conclusion”.

Background

In this section, we first cover the basics of deployment and 
management automation and then introduce the TOSCA 
specification.

Deployment and Management Automation

Both industry and academia have given more and more 
attention to orchestration and management frameworks over 
the past few years [29]. Most big industry players have also 
developed Cloud Management Platforms (CMP) to automate 
cloud provisioning and offer lifecycle management of cloud 
applications. These commercial platforms are generally nei-
ther open to the community nor portable across third-party 
providers.

There are a few tools sharing similarities with cloud 
orchestrators. Configuration management tools, such as 
Ansible, Chef, Puppet and Salt, automate the develop-
ment, delivery, testing and maintenance throughout the 
software lifecycle. Infrastructure as Code (IaC) tools have 
also appeared to change, configure and automate infrastruc-
ture. Terraform is one of the most notable IaC open-source 
solutions. All of these technologies use either declarative 
or imperative models to automate application deployment. 
While declarative models describe the application structure 

and its desired state from which all the required deployment 
tasks are automatically derived, imperative models define 
the deployment tasks to be executed, the control flow and 
the data flow between them [15].

Despite being highly intuitive and reusable, declarative 
models have their limitations. Deployment systems can 
directly infer all tasks to be executed from the models, but 
they can rarely customise tasks or alter their execution order. 
Imperative models are necessary when it comes to complex 
application deployments with customised tasks. Workflows 
languages, such as BPMN [26] and BPEL [23], are typi-
cal examples of imperative technologies. The other side of 
the coin is that imperative models require technical exper-
tise and are frequently outdated as compared to declarative 
models.

While the available technologies support automated 
deployments over multiple environments, they only provide 
limited automated management [28]. Cloud providers typi-
cally offer management features for the hosted components 
only, resulting in the need for single management features to 
be orchestrated when it comes to multiple providers. Holistic 
management of multiple components distributed across dif-
ferent environments is mostly unsupported as well. Typical 
holistic management features include but are not limited to 
component backup, testing, update, etc., which require sin-
gle management features to be orchestrated (by a workflow, 
for instance).

The TOSCA Specification

Specification languages to describe cloud applications sim-
plify the orchestration process and promote interoperability 
across different providers. TOSCA [24] represents a nota-
ble contribution to cloud standardisation, since it allows to 
describe applications and their lifecycle management in a 
vendor- and technology-independent fashion [3].

TOSCA describes the structure of a cloud application 
as a service template, which consists of a topology tem-
plate and all the types needed to build such a template. The 
topology template is a typed directed graph, whose nodes 
(called node templates) model the application components, 
and edges (called relationship templates) model the relations 
among such components. Each topology node comes with 
the corresponding capabilities and requirements, the inter-
faces to manage it, the attributes and properties it features, 
the software artifacts it uses and the policies applied to it.

TOSCA supports application deployment and manage-
ment in two different flavours: imperative processing and 
declarative processing. The imperative processing requires 
that management logic is contained in the Cloud Service 
Archive (CSAR), which stores all software artifacts needed 
to provision and manage the application. Management plans 
imperatively orchestrate low-level management operations 
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that are provided either by the application components or 
by publicly accessible services. Management plans are typi-
cally implemented using workflow languages (e.g., BPMN, 
BPEL). The declarative processing shifts management logic 
from plans to runtime. TOSCA runtimes automatically infer 
the corresponding logic by interpreting the application 
topology template. Management functionalities depend on 
the corresponding runtime, which is not standardised by the 
TOSCA specification.

TOSCA Simple Profile [25] is an isomorphic rendering of 
a subset of the TOSCA specification in the YAML language. 
It provides a more accessible syntax as well as a more con-
cise and incremental expressiveness to speed up the adoption 
of TOSCA to describe portable cloud applications. TOSCA 
Simple Profile defines a few normative workflows to operate 
a topology and specifies how they are declaratively gener-
ated: deploy, undeploy, scaling workflows and auto-healing 
workflows. Imperative workflows can be used for complex 
use cases where declarative workflows do not suffice. Nev-
ertheless, they provide less reusability as they are topology 
specific rather than being dynamically generated based on 
the topology content. The work described in this paper heav-
ily grounds on the TOSCA Simple Profile.

Motivation

As discussed in “Deployment and Management Automa-
tion”, current approaches support automated deployment 
over multiple environments, but they only provide limited 
automated management which demands orchestration when-
ever multiple cloud providers, services and components are 
involved. By contrast, automated holistic management is 
mostly unsupported, unless custom implementations come 
into play.

Figure  1 illustrates a declarative application model 
describing a typical TOSCA-based cloud application. To 
have a correct application deployment, it is crucial to ascer-
tain whether or not it is successful from both a technical and 
business standpoint. Testing is the main way to reach the 
goal. In case of multi-cloud applications, it might be neces-
sary for application components to communicate with each 
other. For instance, depending on the testing, SSH connec-
tions (e.g. Compute nodes), HTTP connections (e.g. Word-
Press and Apache nodes) or even SQL connections (e.g. 
DBMS and Database nodes) might need to be established. 
Since massive expertise is required for testing, automated 
test generation is important to ensure that all components 
and communication among them work as expected. In case 
of a web application, it is also important to copy current 
data on a regular basis. To back up the Database in our sce-
nario, it is required to either use the backup feature of the 
underlying DBMS or establish a direct connection to the 

database and execute a query to retrieve all data. However, 
additional technology and domain-specific logic need to be 
orchestrated and executed in the correct order.

Beside testing and backup, additional management func-
tionalities could be considered. For instance, throughout a 
typical application life-cycle, application components might 
need updates of different kinds. By way of example, let us 
consider a DBMS component and a Compute node. For the 
former, a couple of update types might occur: configuration 
update (e.g., port number change) and version update. For 
the latter, update operations might include package update 
and user creation and/or update. Even in this case, since 
these update operations demand custom logic and consider-
able expertise, a mechanism to enable automated updates on 
application components is needed.

In general, automating application management can be a 
major challenge when management features must be imple-
mented manually, since manual implementations require 
extensive domain-specific expertise and are error-prone, 
time consuming and frequently outdated. In this work we 
propose an approach for the automatic generation of holistic 
management workflows based on TOSCA application mod-
els and policies.

Conceptual Overview

In this section, we provide a bird’s-eye view of the meth-
odology to automatically generate executable management 
workflows from TOSCA application models. The approach 
is depicted in Fig. 2.

The overall process consists of three distinct sequential 
phases, namely Application Specification, Workflow Genera-
tion and Orchestration. The process commences with the 
Application Specification phase, where the application archi-
tect is responsible for modelling and submitting a TOSCA 
application model which is specified based on interface 
types, node types and policy types included in a TOSCA 
Simple Profile extension. All these types contributes to the 
definition of management interfaces and policies for differ-
ent management features, using a general-to-specific pat-
tern. In fact, considering a general management feature (e.g. 
testing), general interface types and policy types are defined 
for such a feature which get to be extended for specific node 
types (e.g. Database). Also, Managed node types are defined 
by extending basic TOSCA node types based on all available 
management interfaces. A thorough discussion of interface 
types, policy types and managed node types is provided in 
“Application Specification”.

The submitted input triggers the Workflow Generation 
phase, which in turn consists of the transformation of a 
TOSCA application model into different workflow plans, 
namely provisioning and management plans (e.g. backup, 
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testing, update). The provisioning plan is generated based on 
node dependencies, whereas management plans are gener-
ated based on policies and management interface operations 
defined on nodes. Depending on the specific management 
feature, different strategies (e.g. parallel, sequential) can also 
be used for the automated generation of management plans. 

The TOSCA Processor component is in charge of parsing 
a TOSCA application model, generating provisioning and 
management plans for it and validating them. Ultimately, 
in the Orchestration phase, a workflow engine executes 
such plans. The generation of management plans and the 
framework enacting the entire process are investigated in 

Fig. 1   TOSCA application model of a WordPress scenario

Fig. 2   Overview of the auto-
mated generation of application 
management workflows
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“Management Workflow Generation” and “Prototype Vali-
dation”, respectively.

Policy‑Based Application Management

In this section, we fully explore the proposed approach 
to automatically generate management workflows from 
TOSCA-based application models. The main steps of the 
entire process are covered below. In particular, three man-
agement features are taken into consideration with refer-
ence to application specification and workflow generation: 
backup, testing and update.

Application Specification

One of the main strengths of this work is the development 
of a standards-based approach for the description of applica-
tion topology and management, which leverages the TOSCA 
standard. TOSCA application models are described by 
means of a TOSCA Simple Profile extension. In fact, while 
normative interface types and node types provide sufficient 
deployment capabilities, the current version of the TOSCA 
standard is not well equipped with management features. In 
order to fill this gap, we provide application models with 
additional management information to enable the automated 
generation of holistic management workflows.

Application models are enriched with specific interface 
types, which get to be extended depending on a combina-
tion of management features and node type categories, node 
types, which extend normative node types and include these 
management interfaces, and policy types, which define the 
operations to execute on the targeted node types based on 
management features. The complete set of extended types 
is fully TOSCA-compliant, since it is valid according to 
the grammar and rules defined in the standard, and can 
be further enriched with additional management features. 
More details about these types are provided in the following 
subsections.

Interface Types

Although the TOSCA Simple Profile specification includes 
two normative interface types, i.e., Standard and Config-
ure, for component lifecycle and configuration respectively, 
there is a lack of support for management features. As a 
result, we extended the standard specification by defining 
management-oriented interface types.

For the sake of clarity, Fig. 3 shows a few exemplifying 
interface type definitions included in our TOSCA Simple 
Profile extension. As mentioned in “Conceptual Overview”, 
given a specific management feature, interface types are 
defined via a general-to-specific pattern. As we can see in 

Fig. 3a, two interface types are present: a general interface 
type (Test), which is defined for testing purposes, and a spe-
cific interface type (TestDB), which is an extension of the 
former for testing database components. Figure 3b shows 
two interface type definitions: a general interface type for 
backup purposes and a specific interface type for backing 
up database components. Similarly, Fig. 3c illustrates two 
interface type definitions: a general interface type for update 
purposes and a specific interface type for updating DBMS 
components.

Node Types

All these additional interface types must be included in node 
type definitions, which is why we also extended the norma-
tive node type hierarchy to support management features. 
By way of illustration, Fig. 4 depicts two node type defini-
tions included in our TOSCA Simple Profile extension. In 
particular, as we can see in Fig. 4a, the Database.Managed 
node type extends the normative Database node type by 
adding TestDB and StateDB interfaces (see Fig. 3) for testing 
and backup purposes. By contrast, Fig. 4b shows the DBMS.
Managed node type, which extends the normative DBMS 
node type by adding TestDBMS and UpdateDBMS interfaces 
(see Fig. 3) for testing and update purposes.

Policy Types

Policy types are also defined to specify the targeted node 
types and the actions to perform in relation to manage-
ment features, when specific events are triggered. Specifi-
cally, policy triggers are linked to notification events from 
the targeted node types’ management interfaces. Similar 
to interface types, policy types are defined via a general-
to-specific pattern as well. As we can see in Fig. 5, a few 
exemplary policy types are present. Figure 5a depicts the 
Testable general policy type for testing purposes and the 
TestableDB specific policy type for testing database compo-
nents. Figure 5b illustrates the Freezable general policy type 
for backup purposes and the FreezableDB specific policy 
type for backing up database components. Lastly, Fig. 5c 
shows the Updatable general policy type for update purposes 
and the UpdatableDBMS specific policy type for updating 
DBMS components.

Management Workflow Generation

As mentioned in “Conceptual Overview”, the application 
architect models a TOSCA application model according to 
interface types, node types and policy types included in a 
TOSCA Simple Profile extension. As a result, the applica-
tion model is automatically enriched with management capa-
bilities, which the TOSCA Processor (see Fig. 2) leverages 
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to generate management workflows based on policies and 
interface operations defined on nodes.

Policies are of paramount importance, as they specify the 
targeted nodes and the actions triggered depending on man-
agement features. In addition, the strategy for the generation 
of management workflows depends on management features. 
The following subsections detail two different strategies, 
namely parallel strategy and sequential strategy, and how 

they relate to each other with respect to three management 
features: backup, testing and update.

Backup Feature

In case of the backup feature a parallel strategy is adopted, 
since every stateful component can be backed up indepen-
dently. In fact, although some components can either directly 

Fig. 3   Illustrative interface types for Testing, Backup and Update features
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or indirectly list different components as node requirements, 
the backup of their state would not necessarily be affected 
as opposed to other management features (i.e. testing and 
update). The parallel generation of Backup workflows works 
as shown in Fig. 6.

In general, considering more than one Freezable policies 
(see Fig. 5b), a new workflow is generated where more than 
one paths can trigger the workflow instantiation by means 
of an event-based gateway. Each path consists of a mes-
sage intermediate event, which is linked to a notification 
event from the targeted nodes’ State interface (see Fig. 3b), 
and a parallel multi-instance subprocess, whose number of 
instances depends on the number of target nodes the policy 
is applied to. A service task in the subprocess executes the 
action of the policy trigger, which enacts the actual backup.

Testing Feature

In case of the testing feature two strategies are viable: (a) 
parallel strategy and (b) sequential strategy. Components 
can be either tested in isolation with the parallel strategy 
or tested consecutively following node dependencies with 
the sequential strategy. It is worthy of note that all node 
dependencies can be automatically determined based on 

node requirements and relationships in a TOSCA applica-
tion model [8, 9]. Figure 7 shows how Testing workflows 
are generated. Firstly, a workflow is generated for each node 
type. Secondly, a distinction is made between nodes without 
dependencies and nodes with dependencies. The former are 
tested in isolation, while the latter can be either tested in iso-
lation or tested sequentially according to node dependencies.

In the first case (see Fig. 7a), considering more than one 
testing operations, a new workflow is generated where more 
than one paths can trigger the workflow instantiation by 
means of an event-based gateway. Each path consists of a 
message intermediate event, which is linked to a notification 
event from the targeted nodes’ Test interface (see Fig. 3a), 
and a parallel multi-instance subprocess, whose number of 
instances depends on the number of target nodes the policy 
is applied to. A service task in the subprocess executes the 
action of the policy trigger, which enacts the actual testing. 
Finally, a message end event marks the end of the workflow.

In the second case (see Fig. 7b), a new workflow is 
generated where either a message start event, coming from 
the targeted nodes’ Test interface notifications, or a paral-
lel multi-instance receive task, waiting for notifications 
from node requirements under test, triggers the workflow 
instantiation. A parallel multi-instance subprocess is then 

Fig. 4   Illustrative node types for Testing, Backup and Update features
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activated depending on the number of target nodes the 
policy is applied to. A service task in the subprocess exe-
cutes the action of the policy trigger enacting the actual 
testing. Finally, a message end event marks the end of the 
workflow.

Update Feature

Similar to the testing feature, both parallel strategy and 
sequential strategy can be applied for the update feature as 
well. The parallel strategy allows to update components in 

Fig. 5   Illustrative policy types for Testing, Backup and Update features
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isolation, whereas the sequential strategy enables to update 
them consecutively according to node dependencies. Fig-
ure 8 shows how Update workflows are generated.

A workflow is generated for each and every node type. 
We must make a sharp distinction between nodes without 
dependencies and nodes with dependencies. While the for-
mer can be updated in isolation, the latter can be updated 
either in isolation or sequentially based on direct and/or 

indirect dependencies. Direct dependencies originate from 
node requirements and relationships and reflect the depend-
ency graph. These are the same dependencies from which 
deployment workflows are generated too. Indirect dependen-
cies refer to transitive dependencies which are induced by 
nodes acting as direct dependencies. For the sake of clar-
ity, with reference to the motivation scenario in “Motiva-
tion”, the wordpress_wa node includes direct dependencies 
towards three other nodes: apache_ws, mysql_database and 
php_sc. In addition, it also features an indirect dependency 
towards the mysql_dbms node, since a DBMS node update 
can have an impact on a WordPress node. For instance, a 
configuration update on a DBMS node (e.g., changing the 
DBMS port) usually leads to a configuration update on a 
WordPress node.

In the absence of node dependencies of any sort (see 
Fig. 8a), given more than one update operations, a new 
workflow is generated where more than one paths can trig-
ger the workflow instantiation via an event-based gateway. 
Each path includes a message intermediate event, which 

Fig. 6   Parallel strategy for Backup workflows

Fig. 7   Parallel and sequential strategies for Testing workflows

Fig. 8   Parallel and sequential strategies for Update workflows
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is linked to a notification event from the targeted nodes’ 
Update interface (see Fig. 3c), and a parallel multi-instance 
subprocess, whose number of instances depends on the num-
ber of target nodes the policy is applied to. A service task 
in the subprocess executes the update action of the policy 
trigger. Ultimately, a message end event marks the end of 
the workflow.

When node dependencies are present (see Fig. 8b), a 
new workflow is generated where one of a parallel multi-
instance receive task, waiting for notifications from direct 
node dependencies, a message start event, coming from the 
targeted nodes’ Update interface notifications, and one of the 
targeted nodes’ indirect dependencies triggers the workflow 
instantiation. A parallel multi-instance subprocess is then 
activated depending on the number of target nodes the policy 
is applied to. A service task in the subprocess executes the 
update action of the policy trigger. In conclusion, a message 
end event marks the end of the workflow.

Prototype Validation

To validate our approach, we implemented a prototype based 
on the open-source TORCH [30], which is a TOSCA-based 
framework for the deployment and orchestration of VM-
based and container-based applications on top of different 
cloud providers. TORCH takes a TOSCA application model 
as input and turns it into an equivalent BPMN workflow and 
dataflow model, which a BPMN engine leverages to enforce 
the operations specified in the model.

Figure 9 shows the multi-layered framework architecture 
of TORCH. The Application Specification Layer consists 
of two components: the Dashboard, which is the front-end 
component for user interaction and deployment monitoring, 
and the TOSCA Modeller, which guides the user to sketch 
application requirements. The Orchestration Layer com-
prises the TOSCA Processor component, which is in charge 
of validating, parsing and converting TOSCA application 
templates into BPMN plans, and the BPMN Engine compo-
nent, which is responsible for instantiating and orchestrat-
ing such BPMN plans. The Service Binding Layer manages 
the orchestration of application resources and services and 
consists of four components: Service Bus, Service Registry, 

Service Broker and Service Connectors. The Service Bro-
ker is in charge of taking care of the requests coming from 
the Orchestration Layer by means of the Service Bus. The 
Service Connectors include the logic to provision a specific 
resource or service, interacting with the external providers. 
The Service Registry is responsible for the registration and 
discovery of the Service Connectors.

The proposed approach for the automated generation of 
management workflows (see “Policy-Based Application 
Management”) is based on the extension of the TOSCA 
Processor (see Fig. 9), which consists of three components: 
TOSCA-Parser, BPMN-Generator and BPMN-Validator. 
The TOSCA-Parser provides means to load, parse and 
validate a TOSCA service template and create the corre-
sponding dependency graph. The BPMN-Generator creates 
a BPMN plan depending on a parsed service template and 
its dependency graph. The BPMN-Validator validates an 
automatically generated plan against the BPMN specifica-
tion. Further details about these components can be found 
in Calcaterra et al. [8, 9].

As mentioned above, the TOSCA Processor was extended 
to provide support for the automatic generation of holistic 
management workflows. A few novelties were introduced 
in both the TOSCA-Parser and the BPMN-Generator. With 
regard to the TOSCA-Parser, it was enhanced to integrate 
an ad-hoc parsing of node properties and artifacts, custom 
interfaces, interface operations and notifications, policy 
triggers. With respect to the BPMN-Generator, as it was 
originally designed to generate provisioning plans based on 
the TOSCA dependency graph, it was extended to support 
the generation of management plans based on TOSCA poli-
cies. In particular, while the original BPMN-Generator was 
only capable of generating workflows depending on node 
dependencies, the extended BPMN-Generator is capable of 
generating workflows even when there are no explicit node 
dependencies. For instance, it can support both sequential 
and parallel strategies for workflow generation (see “Man-
agement Workflow Generation”).

Case Study

Based on the motivation scenario introduced in “Moti-
vation”, we discuss three different management features, 
namely Testing, Backup and Update. As mentioned in 
“Application Specification”, managed node types extend 
normative node types and include management inter-
faces containing specific management operations and 
their respective implementation artifacts. By applying 
our approach, the motivating scenario is automatically 
enriched with test, backup and update operations by means 
of feature-specific node types and policy types. The added 

Fig. 9   TORCH-framework architecture
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operations are shown in Fig. 10. With reference to the 
backup feature, we can see that the mysql_database node 
includes the StateDB interface with two management oper-
ations: db_freeze and db_thaw. With regard to the testing 
feature, every node contains a specific interface for test-
ing purposes. By way of illustration, we can observe that 
the mysql_server and mysql_dbms nodes include the Test-
Compute and TestDBMS interfaces, respectively. Finally, 
almost every node features a particular interface for updat-
ing purposes. For instance, the app_server and php_sc 
nodes comprehend the UpdateCompute and UpdateSC 
interfaces, respectively.

Fig. 10   Management-oriented TOSCA application model of a WordPress scenario

Fig. 11   Database Backup workflow for a WordPress scenario
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Backup Feature

Based on the approach for the management workflow gener-
ation in “Management Workflow Generation”, Fig. 11 shows 
the Backup workflow for the mysql_database node in the 
motivation scenario. Given a FreezableDB policy targeting 
a Database.Managed node (see Fig. 5b), a new workflow is 
generated where the db_state_freezing message start event, 
coming from the StateDB interface notifications, triggers the 
workflow instantiation. A parallel multi-instance subprocess 
is then activated depending on the number of target nodes 
the policy is applied to. In this case there is only one target 
node (i.e. mysql_database). The db_freeze service task in the 
subprocess executes the action of the policy trigger, which 
enacts the actual database backup.

Testing Feature

Figure 12 shows exemplifying Testing workflows for the 
mysql_server and app_server nodes (Fig.  12a) and the 
mysql_dbms node (Fig. 12b) in the motivation scenario. 
In contrast with the strategy for the generation of Backup 
workflows, the strategy of generation of Testing workflows 
can take node dependencies into account. In particular, a 
distinction is made between nodes having no dependencies, 
such as Compute nodes, and nodes having dependencies, 
such as DBMS nodes.

In the first case (see Fig. 12a), given a TestableCompute 
policy targeting a Compute node, two paths are generated 
where either the compute_test_ping message intermediate 
event or the compute_test_ssh message intermediate event, 
coming from the TestCompute interface notifications, trig-
gers the workflow instantiation by means of an event-based 
gateway. Regardless of the path being activated, a paral-
lel multi-instance subprocess is then instantiated depend-
ing on the number of target nodes the policy is applied to. 
In this case there are two target nodes (i.e. mysql_server 
and app_server). Either the test_ping service task or the 
test_ssh_connection service task executes the action of the 
policy trigger, which enacts the actual Compute testing. 
Finally, the compute_tested message end event marks the 
end of the workflow.

In the second case (see Fig. 12b), given a TestableDBMS 
policy targeting a DBMS node, a new workflow is gener-
ated where either the dbms_connection_testing message 
start event, coming from the TestDBMS interface notifica-
tions, or the await test notifications parallel multi-instance 
receive task, waiting for notifications from node require-
ments under test (i.e. mysql_server), triggers the workflow 
instantiation. A parallel multi-instance subprocess is then 
activated depending on the number of target nodes the policy 
is applied to. In this case there is only one target node (i.e. 
mysql_dbms). The test_dbms_connection service task in the 
subprocess executes the action of the policy trigger, which 
enacts the actual DBMS testing. Finally, the dbms_tested 
message end event marks the end of the workflow.

Update Feature

Figure  13 illustrates sample Update workflows for the 
mysql_server and app_server nodes (Fig. 13a) and the php_
sc node (Fig. 13b) in the motivation scenario. Analogous 
to the generation of Testing workflows, the strategy for the 
generation of Update workflows can take node dependencies 
into account. Once again, there is a clear separation between 
nodes having no dependencies, such as Compute nodes, and 
nodes having dependencies, such as SC nodes.

With regard to nodes without dependencies (see Fig. 13a), 
considering an UpdatableCompute policy targeting a Com-
pute node, two paths are generated where either the com-
pute_update_packages message intermediate event or the 
compute_update_users message intermediate event, coming 
from the UpdateCompute interface notifications, triggers the 
workflow instantiation via an event-based gateway. No mat-
ter what path is activated, a parallel multi-instance subproc-
ess is then instantiated based on the number of target nodes 
the policy is applied to. In this particular case there are two 
target nodes (i.e. mysql_server and app_server). A service 
task between the update_packages and the update_users 
executes the update action of the policy trigger. Finally, the Fig. 12   Illustrative Testing workflows for a WordPress scenario
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compute_updated message end event marks the end of the 
workflow.

In case of nodes with dependencies (see Fig. 13b), given 
an UpdatableSC policy targeting an SC node, a new work-
flow is generated where one of the await direct update notifi-
cations parallel multi-instance receive task, waiting for noti-
fications from direct node dependencies (i.e. app_server), 
and the sc_version_update message start event, coming from 
the UpdateSC interface notifications, triggers the workflow 
instantiation. A parallel multi-instance subprocess is then 
activated depending on the number of target nodes the policy 
is applied to. In this specific case there is only one target 
node (i.e. php_sc). The update_sc_version service task in the 
subprocess executes the update action of the policy trigger. 
In conclusion, the sc_updated message end event marks the 
end of the workflow.

Related Work

Policy-based automation and application management have 
witnessed a substantial increase in popularity in business-
oriented and research projects [29]. This section contains a 
brief literature overview on application management based 
on policies, TOSCA or similar approaches.

In Waizenegger et al. [31] the authors presented Poli-
cy4TOSCA, a policy-based service provisioning approach 
for automatic processing of TOSCA policy definitions in a 

TOSCA runtime. Policies were used to formalise non-func-
tional security requirements. Although policies can be easily 
reused in different topologies, policy definitions are based on 
the very first version of TOSCA. In Zimmermann et al. [34] 
the authors proposed a concept of Deployment Enforcement 
Rules to specify and automatically enforce reusable security 
requirements and restrictions for TOSCA-based deployment 
models. In summary, we can conclude that these approaches 
mostly utilised policies to put security requirements into 
effect. However, they could be theoretically adapted to match 
different kinds of requirements as well.

In Alexander et al. [1] the authors presented TOSCAMP, 
an end-to-end cloud orchestration solution based on TOSCA 
and CAMP, which allows for multi-cloud application orches-
tration through declarative policies. In Di Modica et al. [12] 
the authors introduced a policy-based deployment in hybrid 
and multi-cloud environments. Policies were used to address 
non-functional requirements (e.g., security, geolocation). 
Even though both works leveraged policies for application 
orchestration on multi-cloud environments, no holistic man-
agement was considered.

In Pierantoni et al. [27] the authors introduced MiCADO, 
a cloud orchestration framework to deploy and manage 
TOSCA-based applications in the cloud. An extensible set of 
TOSCA policies was also elaborated to manage application 
deployment, performance, scalability and security require-
ments. In Caballer et al. [6] the authors presented INDIGO-
DataCloud, a cloud orchestration platform to orchestrate 
TOSCA-based applications with complex topologies and 
operational requirements across heterogeneous cloud infra-
structures. In Kumara et al. [20] the authors proposed the 
SODALITE platform to support the deployment, execution, 
monitoring and policy-based runtime adaptation of TOSCA-
based applications on heterogeneous cloud-edge infrastruc-
tures. In Cankar et al. [10] the authors presented xOpera, 
an orchestrator of for enacting application deployment and 
autoscaling in a policy-based fashion by means of TOSCA 
templates. All the aforementioned works dealt with applica-
tion deployment and policy-based management. Neverthe-
less, the main focus was on non-functional requirements, 
with no mention of holistic management.

In Wurster et al. [33] the authors presented a modelling 
concept to annotate a deployment model with automatic 
deployment tests. Limitations of the proposal include the 
fact that the deployment system must provide a basic set of 
plugins and be extensible with custom plugins from arbitrary 
sources. In addition, the approach features no other holistic 
management except testing. In Harzenetter et al. [18] the 
authors introduced an approach to automatically terminate 
an application in its current state and restart it in the same 
state again. Limitations of the proposal include the assump-
tion that a stateful component type must be annotated to 
indicate that it will hold a state between requests. Besides, 

Fig. 13   Illustrative Update workflows for a WordPress scenario
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the approach features no other holistic management except 
state backup and recovery. In Harzenetter et al. [17, 19] 
the authors proposed a concept for the automatic genera-
tion of executable management workflows based on either 
an application deployment model or a running application. 
The modelled components are enriched with component-
specific management operations and a management work-
flow gets generated to orchestrate such operations. However, 
the approach suffers from some limitations. To provide new 
management features, on the one hand, the workflow genera-
tion must be extended with a corresponding plugin and, on 
the other one, domain experts have to implement manage-
ment operations in new component types.

In conclusion, the general picture emerging from the most 
recent academic research is that the majority of literature 
works centred around a specific management feature: either 
testing (i.e. [33]) or backup (i.e. [18]). On the other hand, a 
couple of works (i.e. [17, 19] integrated both management 
operations. Despite their similarities, our work differs from 
the aforementioned ones because it allows to:

•	 Utilise the update feature besides testing and backup 
ones;

•	 Provide a general holistic approach based on a TOSCA-
compliant extension;

•	 Integrate supplementary management features without 
requiring additional components (e.g. plugins) installed 
on the framework.

Conclusion

In a business scenario where resources and services are sup-
plied by multiple cloud providers, one of the deciding factors 
for establishing competitive advantage is the automated pro-
visioning and management of complex cloud applications. 
As a consequence, a number of orchestration frameworks 
have appeared to simplify the entire life-cycle management 
of cloud applications. Nevertheless, holistic application 
management involving multiple components distributed 
over heterogeneous environments is still an uncovered issue.

In this paper, we proposed a concept to automatically 
generate holistic application management workflows by 
enriching TOSCA application models with a combination 
of TOSCA interfaces, node types and policy types. The 
main steps of the process, namely the application model 
description and the management workflow generation, 
were thoroughly investigated. A prototype implementa-
tion of the framework was developed and a case study was 
also discussed to corroborate the practical feasibility of the 
approach.

In the future, the presented approach will be extended 
by following different research directions. Besides backup, 

testing and update, other management features will be inves-
tigated and integrated into the framework. Additional strat-
egies for workflow generation will also be explored. Ulti-
mately, supplementary case studies will be considered for 
further experimental validation.
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