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Abstract
Accurate simulation of physical processes is crucial for the success of modern particle physics. However, simulating the 
development and interaction of particle showers with calorimeter detectors is a time consuming process and drives the 
computing needs of large experiments at the LHC and future colliders. Recently, generative machine learning models based 
on deep neural networks have shown promise in speeding up this task by several orders of magnitude. We investigate the 
use of a new architecture—the Bounded Information Bottleneck Autoencoder—for modelling electromagnetic showers in 
the central region of the Silicon-Tungsten calorimeter of the proposed International Large Detector. Combined with a novel 
second post-processing network, this approach achieves an accurate simulation of differential distributions including for 
the first time the shape of the minimum-ionizing-particle peak compared to a full Geant4 simulation for a high-granularity 
calorimeter with 27k simulated channels. The results are validated by comparing to established architectures. Our results 
further strengthen the case of using generative networks for fast simulation and demonstrate that physically relevant dif-
ferential distributions can be described with high accuracy.
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Introduction

Precisely measuring nature’s fundamental parameters and 
discovering new elementary particles in modern high energy 
physics is only made possible by our deep mathematical 
understanding of the Standard Model and our ability to reli-
ably simulate interactions of these particles with complex 
detectors. While essential for our scientific progress, the 
production of these simulations is increasingly costly. This 
cost is already a potential bottleneck at the LHC, and the 

problem will be exacerbated by higher luminosity, larger 
amounts of pile-up and more complex and granular detec-
tors at the high-luminosity LHC and planned future collid-
ers. A promising way to accelerate the simulation is offered 
by generative machine learning models and was pioneered 
in Ref. [1]. The present work focuses on simulating a very 
high-resolution calorimeter prototype with greater fidelity of 
physically relevant distributions, paving the road for practi-
cal applications1.

Advanced machine learning methods, based on deep neu-
ral networks, are rapidly transforming and improving the 
way to explore the fundamental interactions of nature in par-
ticle physics—see for example Ref. [2] for a recent overview 
of neural network architectures developed to identify had-
ronically decaying top quarks. However, we are only begin-
ning to explore the potential benefits from unsupervised 
techniques designed to model the underlying high-dimen-
sional density distribution of data. This allows, e.g., anomaly 
detection algorithms to identify signals from new physics 
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theories without making specific model assumptions [3–12]. 
Furthermore, once the phase space density is encoded in 
a neural network, it can be sampled from very efficiently. 
This makes synthetic models of particle interactions many 
orders of magnitude faster than classical approaches, where 
for example for a particle showering in a calorimeter many 
secondary shower particles have to be created and individu-
ally tracked through the material of the detector according 
to the underlying physics processes.

Calorimeters are a crucial part of experiments in high 
energy physics, where the incident primary particles cre-
ate showers of secondary particles in dense materials that 
are used to measure the energy. In sandwich calorimeters, 
layers of dense materials are interleaved with sensitive lay-
ers recording energy depositions from secondary shower 
particles mostly from ionization. The details of the shower 
development via creation of secondary particles as well as 
their energy loss is typically simulated with great accuracy 
using the Geant4 [13] toolkit.

The crucial role of calorimeter simulation as a time-con-
suming bottleneck in the simulation chain at the LHC is 
well established. For example, the ATLAS experiment uses 
more than half of its total CPU time on the LHC Computing 
Grid for Monte Carlo simulation, which in turn is entirely 
dominated by the calorimeter simulation [14].

While generative neural network techniques promise 
enormous speed-ups for simulating the calorimeter response, 
it is of extreme importance that all relevant physical shower 
properties are reproduced accurately in great detail. This 
is particularly challenging for highly granular calorimeters, 
with a much higher spatial resolution, foreseen for most 
future colliders. Such concepts, as developed for the Interna-
tional Linear Collider (ILC), are also being used to upgrade 
detectors at the LHC for upcoming data-taking periods. One 
prominent example is the calorimeter endcap upgrade of the 
CMS experiment [15] with about 6 million readout chan-
nels. These factors make the timely development of precise 
simulation tools for high-resolution detectors relevant and 
motivate our investigation of a prototype calorimeter for the 
International Large Detector (ILD).

Outside of particle physics, generative adversarial neural 
networks [16] (GANs) have been used to produce synthetic 
data—such as photo-realistic images [17]—with great suc-
cess. A traditional GAN consists of two networks, a genera-
tor and a discriminator separating artificial samples from real 
ones, which are trained against each other. An alternative 
to GANs for simulation are variational autoencoders [18] 
(VAE). A VAE consists of an encoder mapping from input 
data to a latent space, and a decoder, which maps from the 
latent space to data. If the probability distribution in latent 
space is known, it can be sampled from and used to gener-
ate synthetic data. A third path towards generative models 
is offered by normalizing flows [19–23]. In such models, 

a simple base probability distribution is transformed by a 
series of invertible mappings into a complex shape.

Recently, a novel architecture unifying several genera-
tive models such as GANs, VAEs, and others was proposed: 
the Bounded-Information-Bottleneck autoencoder (BIB-
AE) [24]. We will show that by using a modified BIB-AE 
for generation we can accurately model all tested relevant 
physics distributions to a higher degree than achieved by 
traditional GANs. A detailed introduction to this architecture 
is provided in Sect. 3.3.

Specifically in particle physics, first results for the simula-
tion of calorimeters focused on GANs achieved an impres-
sive speed-up by up to five orders of magnitude compared 
to Geant4 [1, 25, 26]. Similarly, an approach using a Was-
serstein-GAN (WGAN) architecture achieved realistic mod-
eling of particle showers in air-shower detectors [27] and a 
high granularity sampling calorimeter [28]. In the context 
of future colliders, an architecture inspired by GANs was 
used for the fast simulation of showers in a high granularity 
electromagnetic calorimeter [29]. Generative models based 
on VAE and WGAN architectures were studied for concrete 
application by the ATLAS collaboration [30–32].

Beyond producing calorimeter showers, generative mod-
els in HEP have also been explored for modeling muon inter-
actions with a dense target [33], parton showers [34–37], 
phase space integration [38–41], event generation [42–47], 
event subtraction [48] and unfolding [49].

The rest of this paper is organised as follows: in Sect. 2 
we introduce the concrete problem and training data, in 
Sect. 3 the used generative architectures are discussed, and 
in Sect. 4 the obtained results are presented and compared. 
Finally, Sect. 5 provides conclusions and outlook.

Data Set

The ILD [50] detector is one of two detector concepts pro-
posed for the ILC. It is optimized for Particle Flow, an algo-
rithm that aims at reconstructing every individual particle in 
order to optimize the overall detector resolution. ILD com-
bines high-precision tracking and vertexing capabilities with 
very good hermiticity and highly granular electromagnetic 
and hadronic calorimeters. For this study, one of the two pro-
posed electromagnetic calorimeters for ILD, the Si-W ECal 
is chosen. It consists of 30 active silicon layers in a tungsten 
absorber stack with 20 layers of 2.1mm followed by ten 
layers of 4.2mm thickness respectively. The silicon sensors 
have 5 × 5mm2 cell sizes. Throughout this work, we project 
the sensors onto a rectangular grid of 30 × 30 × 30 cells. 
Each cell in this grid corresponds to exactly one sensor. As 
the underlying geometry of sensors in a realistic calorim-
eter prototype is not exactly regular, we will encounter some 
effects of this staggering. This makes the learning task more 
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challenging for the network, but does not pose a fundamental 
problem. Architectures that more accurately encode irregular 
calorimeter geometries in neural networks exist [51], but are 
not the focus of this work.

ILD uses the iLCSoft [52] ecosystem for detector simu-
lation, reconstruction and analysis. For the full simulation 
with Geant4, a detailed and realistic detector model imple-
mented in DD4hep [53] is used. The training data of photon 
showers in the ILD ECal are simulated with Geant4 version 
10.4 (with QGSP_ BERT physics list) and DD4hep version 
1.11. The photons are shot at perpendicular incident angle 
into the ECal barrel with energies uniformly2 distributed 
between 10 and 100 GeV. All incident photons are aimed 
at the x−y center of the grid—i.e., at the point in the mid-
dle between the four most central cells of the front layer. 
An example event display showing such a photon shower is 
depicted in Fig. 1.

The incoming photon enters from the bottom at z = 0 and 
traverses along the z-axis, hitting cells in the center of the 
x−y plane. No variations of the incident angle and impact 
point are performed in this study. The overlay of 2000 show-
ers summed over the y-axis is shown in Fig. 2. As can be 
seen, the cells in the ILD ECal are staggered due to the 
specific barrel geometry. The whole data set for training 
consists of 950k showers with continuous energies between 
10 and 100 GeV. For the evaluations we generated addi-
tional, statistically independent, sets of events: 40k events 
uniformly distributed between 10–100 GeV and 4k events 

each at discrete energies in steps of 10 GeV between 20 and 
90 GeV.

Generative Models

Generative models are designed to learn an underlying data 
distribution in a way that allows later sampling and thereby 
producing new examples. In the following, we first present 
two approaches—GAN and WGAN—which represent the 
state-of-the-art in generating calorimeter data and which we 
use to benchmark our results. We then introduce BIB-AE as 
a novel approach to this problem and discuss further refine-
ment methods to improve the quality of generated data.

Generative Adversarial Network

The GAN architecture was proposed in 2014 [16] and had 
remarkable success in a number of generative tasks. It intro-
duces generative models by an adversarial process, in which 
a generator G competes against an adversary (or discrimina-
tor) D. The goal of this framework is to train G in order to 
generate samples x̃ = G(z) out of noise z, which are indis-
tinguishable from real samples x. The adversary network D 
is trained to maximize the probability of correctly classify-
ing whether or not a sample came from real data using the 
binary cross-entropy. The generator, on the other hand, is 
trained to fool the adversary D. This is represented by the 
loss function as

and a schematic of the GAN training is provided in 
Fig. 3 (top).

For practical applications, the GAN needs to simulate 
showers of a specific energy. To this end, we parameterise 

(1)L = min
G

max
D

�[logD(x)] + �[log(1 − D(G(z)))],

Fig. 1  A simulated 60 GeV photon shower in the ILD detector, as 
used in the training data

Fig. 2  Overlay of 2000 projections of 50 GeV Geant4 photon show-
ers along the y direction

2 Due to technical issues with the Geant4 generation step, the pro-
duced sample has a difference in statistics of 1 % between the lowest 
and highest energies.
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generator and discriminator as functions of the photon 
energy E [54]. In general, we attempted to minimally mod-
ify the CaloGAN formulation [26] to work with the present 
dataset.

The original formulation of a GAN produces a genera-
tor that minimizes the Jensen–Shannon divergence between 
true and generated data. In general, the training of GANs is 
known to be technically challenging and subject to instabili-
ties [55]. Recent progress on generative models improves 
upon this by modifying the learning objective.

Wasserstein‑GAN

One alternative to classical GAN training is to use the Was-
serstein-1 distance, also known as earth mover’s distance, as 
a loss function. This distance evaluates dissimilarity between 
two multi-dimensional distributions and informally gives 
the cost expectation for moving a mass of probability along 
optimal transportation paths [56]. Using the Kantorovich-
Rubinstein duality, the Wasserstein loss can be calculated as

The supremum is over all 1-Lipschitz functions f, which 
is approximated by a discriminator network D during the 
adversarial training. This discriminator is called critic since 
it is trained to estimate the Wasserstein distance between real 
and generated images.

In order to enforce the 1-Lipschitz constraint on the 
critic [57], a gradient penalty term should be added to (2), 
yielding the critic loss function:

(2)L = supf∈Lip1{�[f (x)] − �[f (x̃)]}.

where � is a hyper parameter for scaling the gradient penalty. 
The term x̂ is a mixture of real data x and generated G(z) 
showers. Following [57], it is sampled uniformly along lin-
ear interpolations between x and G(z).

Finally, we again need to ensure that generated showers 
accurately resemble photons of the requested energy. We 
achieve this by parameterising the generator and critic net-
works in E and by adding a constrainer [28] network a. The 
loss function for the generator then reads:

where x̃ are generated showers and � is the relative strength 
of the conditioning term. This combined network is illus-
trated in Fig. 3. The constrainer network is trained solely on 
the Geant4 showers; its weights are fixed during the genera-
tor training. We use the mean absolute error (L1) as loss3:

Bounded Information Bottleneck‑Autoencoder

Autoencoder architectures map input to output data via a 
latent space. Using a structured latent space allows for later 
sampling and thereby generation of new data. The BIB-
AE [24] architecture was introduced as a theoretical over-
arching generative model. Most commonly employed gen-
erative models—e.g. GAN [16], VAE [18], and adversarial 
autoencoder (AAE) [58]—can be seen as different subsets 
of the BIB-AE. This leads to better control over the latent 
space distributions and promises better generative perfor-
mance and interpretability. In the following, we focus on the 
practical advantage gained from utilizing the individual BIB-
AE components and refer to the original publication [24] for 
an information-theoretical discussion.

As it is an overarching model, an instructive way for 
describing the base BIB-AE framework is by taking a 
VAE and expanding upon it. A default VAE consist of four 
general components: an encoder, a decoder, a latent-space 
regularized by the Kullback–Leibler divergence (KLD), 
and an LN-norm to determine the difference between the 
original and the reconstructed data. These components 
are all present as well in the BIB-AE setup. Additionally, 

(3)
LCritic = �[D(G(z))] − �[D(x)]

+ 𝜆 �[(∥ ∇x̂D(x̂) ∥2 −1)
2],

(4)
LGenerator = −�[D(x̃,E)]

+ 𝜅 ⋅ �[
|
|
|
(a(x̃) − E)2 − (a(x) − E)2

|
|
|
],

(5)LConstrainer = |E − a(x)|.

Fig. 3  Overview of the GAN (top) and WGAN (bottom) architec-
tures. The blue line shows where the true energy is used as an input. 
The loss functions and feedback loops are explained in the text

3 Using L1 loss here gives better performance than L2, as L2 seems 
to introduce too large a penalisation for the occasionally expected 
outliers in the total energy sum due to the finite calorimeter resolu-
tion.
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one introduces a GAN-like adversarial network, trained to 
distinguish between real and reconstructed data, as well 
as a sampling based method of regularizing the latent 
space, such as another adversarial network or a maximum 
mean discrepancy (MMD, as described in the next sec-
tion) term. In total this adds up to four loss terms: the 
KLD on the latent space, the sampling regularization on 
the latent space, the LN-norm on the reconstructed sam-
ples and the adversary on the reconstructed samples. The 
guiding principle behind this is that the two latent space 
and the two reconstruction losses complement each other 
and, in combination, allow the network to learn a more 
detailed description of the data. Specifically looking at 
the two reconstruction terms we have, on the one hand, 
the adversarial network: from tests on utilizing GANs for 
shower generation we know that such adversarial networks 
are uniquely qualified to teach a generator to reproduce 
realistic looking individual showers. On the other hand, we 
have the LN-norm: while our trials with pure VAE setups 
have shown that LN-norms have great difficulty capturing 
the finer structures of the electromagnetic showers, an LN
-norm also forces the encoder-decoder structure to have 
an expressive latent space, as the original images could 
not be reconstructed without any latent space information. 
Therefore, the adversarial network forces the individual 
images to look realistic, while the LN-norm forces latent 
space utilization, thereby improving how well the overall 
properties of the data set are reproduced. The latent space 
loss terms have a similar interaction. Here the KLD term 
regularizes our complete latent space by reducing the dif-
ference between the average latent space distribution and 
a normal Gaussian. The KLD is, however, largely blind 
to the shape of the individual latent space dimensions, 
as it only cares about the average. The sampling based 
latent space regularization term fills this niche by looking 
at every latent space dimension individually.

Our specific implementation of the BIB-AE framework is 
shown in Fig. 4. For our sampling based latent regularization 
we use both an adversary and an MMD term. The adversaries 
are implemented as critics trained with gradient penalty, simi-
lar to the WGAN approach. The main difference in our setup 
compared to the one described in [24] is that we replaced the 
LN-norm with a third critic, trained to minimize the difference 
between input and reconstruction. We chose this because we 
found that using the LN-norm to compare the input and the 
reconstructed output resulted in smeared out images.

For the precise implementation of the loss functions we 
define the encoder network N, the decoder network D, the 
latent critic CL , the critic network C, and the difference critic 
CD . The loss function for the latent critic CL is given by

Here x̂ is a mixture of the encoded input image N(x) and 
samples from a normal distribution N(0, 1)) and the E sub-
script indicates that the network receives the photon energy 
label as an input. The loss function for the main critic C is 
given by

Where x̂ is a mixture of the reconstructed image D(N(x)) 
and the original images x. Finally, the loss function for the 
difference critic CD is given by

Where x̂ is a mixture of the difference D(N(x)) − x and the 
difference x − x = 0 . With different � factors giving the rela-
tive weights for the individual loss terms, the combined loss 

(6)
LCL

= �[CL(NE(x))] − �[CL(N(0, 1))]

+ 𝜆 �[(∥ ∇x̂CL(x̂) ∥2 −1)
2].

(7)
LC = �[CE(DE(NE(x)))] − �[CE(x)]

+ 𝜆 �[(∥ ∇x̂CE(x̂) ∥2 −1)
2].

(8)
LCD

= �[CD,E(DE(NE(x)) − x)] − �[CD,E(x − x = 0)]

+ 𝜆 �[(∥ ∇x̂CD,E(x̂) ∥2 −1)
2].

Fig. 4  Diagram of the BIB-AE architecture, including the additional MMD term defined in Sect. 3.4 and the Post Processor Network defined in 
Sect. 3.5. The blue line shows where the true energy is used as an input. The loss functions and feedback loops are explained in the text
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for the encoder and decoder parts of the BIB-AE can be 
expressed as:

Maximum Mean Discrepancy

One major challenge in generating realistic photon show-
ers is the spectrum of the individual cell energies, which is 
shown in Fig. 6 (left) in Sect. 4. The real spectrum shows 
an edge around the energy that a minimal ionizing particle 
(MIP) would deposit. Since the well-defined energy dep-
osition of a MIP is often used to calibrate a calorimeter, 
we cannot simply ignore it. However, we found that purely 
adversarial based methods tend to smooth out this and other 
similar low energy features, an observation in line with 
other efforts to use generative networks for shower simula-
tion [28]. A way of dealing with this is using MMD [59] to 
compare and minimize the distance between the real (DR) 
and fake (DF) hit-energy distributions:

where x and y are samples drawn from DR and DF respec-
tively and k is any positive definite kernel function. MMD 
based losses have previously been used in the generation of 
LHC events [46].

A naive implementation of the MMD would be to com-
pare every pixel value from a real shower with every value 
from a generated shower. This approach is however not feasi-
ble since it would involve computing Eq. (10) approximately 
(303)2 times for each shower. To make the MMD calculation 
tractable, we introduce a novel version of the MMD, termed 
Sorted-Kernel-MMD. We first sort both, real and generated, 
hit-energies in descending order, and then take the n highest 
fake energies and compare them to the n highest real ener-
gies. Following this we move the n-sized comparison win-
dow by m and recompute the MMD. This process is repeated 
N

m
-times, where N is the total number of pixels one wants to 

compare. The advantage of this approach is two-fold, for one 
the number of computations is linear in N, as opposed to the 
naive implementation which shows quadratic behavior. The 
second advantage is that energies will only be compared to 
similar values, thereby incentivising the model to fine-tune 
the energy. Specifically, the values m = 25 , and n = 100 are 
used and we chose N = 2000 , as this is approximately the 
maximum occupancy observed in our training data before 

(9)

LBIB-AE = −�CL
⋅ �[CL(NE(x))]

− �C ⋅ �[CE(DE(NE(x)))]

− �CD
⋅ �[CD,E(DE(NE(x)) − x)]

+ �KLD ⋅ KLD(NE(x))

+ �MMD ⋅MMD(NE(x),N(0, 1))).

(10)MMD(DR,DF) = ⟨k(x, x�)⟩ + ⟨k(y, y�)⟩ − 2⟨k(x, y)⟩,

any low energy cutoffs. In our experiments, adding this 
MMD term with the kernel function

with � = 200 to the loss term of either a GAN or a BIB-AE 
fixes the per-cell hit energy spectrum to be near identical 
to the training data. This however comes at a price, as the 
additional pixels with the energies used to fix the spectrum 
are often placed in unphysical locations, specifically at the 
edges of the 30 × 30 × 30 cube.

Post Processing

In the previous section we found that using an MMD term 
in the loss function represents a trade off between correctly 
reproducing either the hit energy spectrum or the shower 
shape. To solve this, we split the problem into two networks 
that are applied consecutively but trained with different loss 
functions. The first network is a GAN or BIB-AE trained 
without the MMD term. This produces showers with correct 
shapes, but an incorrect hit-energy spectrum. The second 
network then takes these showers as its input and applies a 
series of convolutions with kernel size one. Therefore this 
second network can only modify the values of existing pix-
els, but not easily add or remove pixels. This second net-
work, here called Post Processor Network, is trained using 
only the MMD term to fix the hit energy spectrum, and the 
mean squared error (MSE) between the input and output 
images, ensuring the change from the Post Processor Net-
work is as minimal as possible.

Results

In the following we present the ability of our generative 
models to accurately predict a number of per-shower varia-
bles as well as global observables and analyse the achievable 
gain in computing performance. We include our implemen-
tation of a simple GAN (Sect. 3.1), a WGAN with addi-
tional energy constrainer (Sect. 3.2), and a BIB-AE with 
energy-MMD and post processing (Sects. 3.3, 3.4 and 3.5). 
A detailed discussion of the architectures and training hyper 
parameters can be found in Appendix A. All architectures 
are trained on the same sample of 950k Geant4 showers. 
Tests are either shown for the full momentum range (labeled 
full spectrum) or for specific shower energies (labeled with 
the incident photon energy in GeV).

Physics Performance

We first verify in Fig. 5 that the showers generated by all 
network architectures visually appear to be acceptable 

(11)k(x, x�) = e−�(x
2+x�2−2xx�)
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compared to Geant4. Were we attempting to generate cute 
cat pictures, our work would be done already at this point. 
Alas, these shower images are eventually to be used as 
realistic substitutes in physics analyses so we need to pay 
careful attention to relevant differential distributions and 
correlations.

In Fig. 6 a comparison between two differential distribu-
tions for all studied architectures and Geant4 is shown. The 
left plot compares the per-cell hit-energy spectrum averaged 
over showers for the full spectrum of photon energies. We 
observe that while the high-energy hits are well described 
by all generative models, both GAN and WGAN fail to 
capture the bump around 0.2 MeV. The BIB-AE is able to 

replicate this feature thanks to the Post Processor Network.4 
This energy corresponds to the most probable energy loss 
of a MIP passing a silicon sensor of the ILD Si-W ECal at 
perpendicular incident angle. Since this is a well-defined 
energy, it can be used in highly granular calorimeters for 
the equalisation of the cell response as well as for setting 
an absolute energy scale. It also leads to a sharp rise in the 
spectrum, as lower energies can only be deposited by ion-
izing particles that pass only a fraction of the thickness at the 
edges of sensitive cells or that are stopped. The region below 
half a MIP, corresponding to around 0.1 MeV, is shaded in 
dark grey. These cell energies are very small and therefore 

Fig. 5  Examples of individual 50 GeV photon showers generated by Geant4 (left), the GAN (center left), WGAN (center right), and BIB-AE 
(right) architectures. Colors encode the deposited energy per cell

Fig. 6  Differential distributions comparing the per-cell energy (left) 
and the number of hits above 0.1 MeV (right) between Geant4 and 
the different generative models. Shown are Geant4 (grey, filled), our 
GAN setup (blue, dashed), our WGAN (red, dotted) and the BIB-AE 

(green, solid). The energy per-cell is measured in MeV for the bottom 
axis and in multiples of the expected energy deposit of a minimum 
ionizing particle (MIP) for the top axis

4 We studied applying post processing to the WGAN architecture as 
well. This is discussed in Sect. 4.2.



 Computing and Software for Big Science (2021) 5:13

1 3

13 Page 8 of 17

will be discarded in a realistic calorimeter, as their signal 
to noise ratio is too low. For the following discussion cell 
energies below 0.1 MeV will therefore not be considered 
and only cells above this cut-off are included in all other 
performance plots and distributions.

Next, the plot on the right shows the number of hits for 
three discrete photon energies (20 GeV, 50 GeV, and 80 
GeV). Here, the GAN and WGAN setups slightly underes-
timate the total number of hits, while the BIB-AE accurately 
models the mean and width of the distribution. This behavior 
can be traced back to the left plot. Since we apply a cutoff 
removing hits below 0.1 MeV , a model that does not cor-
rectly reproduce the hit-energy spectrum around the cut-off 
will have difficulties correctly describing the number of hits.

Additional distributions are shown in Fig. 7. The top left 
depicts the visible energy distribution for the same three 
discrete photon energies. Both, the shape, center and width 
of the peak are well reproduced for all models. Due to the 
sampling nature of the calorimeter under study, the visible 
energy is of course much lower than the incoming photons’ 
energy.

In the top right and bottom two plots we compare the 
spatial properties of the generated showers. First, on the top 

right, the position of the center of gravity along the z axis 
is shown. The Geant4 distribution is well modelled by the 
GANs, however there are slight deviations for the BIB-AE. 
A detailed investigation of this discrepancy showed that the 
z axis center of gravity is largely encoded in a single latent 
space variable. A mismatch between the observed latent dis-
tribution for real samples and the normal distribution drawn 
from when generating new samples directly translates into 
the observed difference. Sampling from a modified distribu-
tion would remove the problem.

Finally, the two plots on the bottom show the longitudinal 
and radial energy distributions. We see that while all models 
are able the reproduce the bulk of the distributions very well, 
deviations for the WGAN appear around the edges.

We next test how well the relation of visible energy to the 
incident photon energy is reproduced. To this end we use a 
Geant4 sample where we simulated photons at discrete ener-
gies ranging from 20 to 90 GeV in 10 GeV steps. We then 
use our models to generate showers for these energies and 
calculate the mean and root-mean-square of the 90% core 
of the distribution, labeled �90 and �90 respectively, for all 
sets of showers. The results are shown in Fig. 8. Overall the 
mean (left) is correctly modelled, showing only deviations in 

Fig. 7  Additional differential 
distributions comparing physi-
cal observables between Geant4 
and the different generative 
models. Shown are Geant4 
(grey, filled), our GAN setup 
(blue, dashed), our WGAN (red, 
dotted) and the BIB-AE with 
Post Processing (green, solid)
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the order of one to two percent. The relative width, �90∕�90 
(right) looks worse: GAN and WGAN overestimate the 
Geant4 value at all energies. While the BIB-AE on average 
correctly models the width, it still shows deviations of up 
to ten percent at high energies. Note that the width cannot 
be interpreted as energy resolution of the calorimeter due 
to the two different absorber thicknesses used in the ECal, 
requiring different calibrations.

Finally, we verify whether correlations between indi-
vidual shower properties present in Geant4 are correctly 
reproduced by our generative setups. The properties chosen 
for this are: The first and second moments in x, y and z 
direction, labeled as m1,x through m2,z , the visible energy 
deposited in the calorimeter Evis , the energy of the simu-
lated incident particle Einc , the number of hits nhit , and 
the ratio between the energy deposited in the 1st/2nd/3rd 
third of the calorimeter and the total visible energy, labeled 
E1∕Evis through E3∕Evis . The results are shown in Fig. 9. 
The top left plot shows the correlations for Geant4 showers. 
We then present the difference to Geant4 for the GAN (top 
right), WGAN (bottom left), and BIB-AE (bottom right). 
The smallest differences are observed for the GAN (absolute 
maximum difference of 0.2), followed BIB-AE (0.36) and 
WGAN (0.57).

Figure 10 shows examples of 2D scatter plots: the num-
ber of hits and the visible energy (top row) as well as the 
center of gravity and the visible energy (bottom row). These 
allow us insight into the full correlations between these vari-
ables beyond the simple correlation coefficients. Similar to 
Fig. 9 we see that the GAN matches the Geant4 correlations 
exceptionally well, while the WGAN and the BIB-AE dis-
play some slight correlation mis-matching. The discrepancy 
in the BIB-AE center of gravity and visible energy correla-
tion can be traced back to the mismodelling of the center of 
gravity as seen in Fig. 7.

The distributions of physical observables shown above 
are expected to be the major factor for assessing the quality 
of a simulation tool. While the correlations are also useful as 
they provide additional insight, our main focus when evalu-
ating network performance are the physics distributions.

The Importance of Post Processing

In the previous section we demonstrated that our proposed 
architecture—the BIB-AE with a post processor network—
achieved excellent performance in simulating important 
calorimeter observables. In the following, we will dissect 
this improvement. To this end we compare a WGAN trained 
with an additional simple MMD kernel (labelled WGAN 
MMD), a WGAN trained with the full post processing 
(labelled WGAN PP), a BIB-AE without post processing 
(labelled BIB-AE) to Geant4 and to the combined BIB-AE 
network including post processing (labelled BIB-AE PP) 
from the main text. We do not investigate a simple GAN 
with post processing as we expect it to exhibit largely the 
same behaviour as the WGAN.

In Fig. 11 we show the performance of these approaches. 
The top left panel of Fig. 11 demonstrates that removing 
post-processing from the BIB-AE leads to a smeared out 
MIP peak, while adding the simple MMD term or the more 
complex post processing to the WGAN result in good mod-
elling of the per-cell hit energy spectrum. However, now this 
improvement comes at a price: the distribution of the num-
ber of hits (top right) is too narrow compared to Geant4 and 
the longitudinal (bottom center) and radial (bottom right) 
energy profiles are described badly as additional energy 
is deposited at the edges of the shower. Especially notice-
able is the additional energy in the first and last layers. This 
would be problematic for standard reconstruction methods 
that rely on the precise position of the shower start and end. 

Fig. 8  Plot of mean ( �
90

 , left) 
and relative width ( �

90
∕�

90
 , 

right) of the energy deposited 
in the calorimeter for various 
incident particle energies. In 
order to avoid edge effects, the 
phase space boundary regions 
of 10 and 100 GeV are removed 
for the response and resolution 
studies. In the bottom panels, 
the relative offset of these quan-
tities with respect to the Geant4 
simulation is shown
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These energy deposits along the image edges are the main 
reason why the BIB-AE Post Processor is implemented as a 
separate network rather than integrated in the main decoder 
structure. The latter would require applying the MMD loss 
to the entire decoder, which in our test led to energy deposits 
similar to what can be seen in the WGAN MMD line.

While we were not able to improve the WGAN approach 
via post processing, we are not aware of fundamental reasons 
why a better performance using a similar method should 
not be possible for GAN and WGAN based architectures 
as well. One reason why AE based architectures might 
allow better training of post processing steps is however the 

higher correlation between real input and fake samples via 
the latent space embedding. Nonetheless, the ability of the 
BIB-AE framework to make use of this post processing setup 
motivates future studies of this rather novel architecture for 
calorimeter shower generation.

Computational Performance

Beyond the physics performance of our generative mod-
els, discussed in the previous section, the major argument 
for these approaches is of course the potential gain in pro-
duction time. To this end, we benchmark the per-shower 

Fig. 9  Linear correlation coefficients between various quantities 
described in the text in Geant4 (top left). Difference between these 
correlations in Geant4 and GAN (top right), Geant4 and WGAN 

(bottom left), and Geant4 and BIB-AE with post processing (bottom 
right). The mean absolute differences compared to Geant4 are 0.058 
for the GAN, 0.187 for the WGAN and 0.132 for the BIB-AE
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Fig. 10  Scatter plot showing the correlations between visible energy and number of hits (top) and visible energy and center of gravity (bottom)

Fig. 11  Differential distributions comparing physics quantities between Geant4 and the different generative models. The energy per-cell is meas-
ured in MeV for the bottom axis and in multiples of the expected energy deposit of a minimum ionizing particle (MIP) for the top axis
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generation time both on CPU and GPU hardware architec-
tures. In Table 1, we provide the performance for 4 (3) batch 
sizes for the WGAN5 (BIB-AE). We observe a speed-up by 
evaluating generative models on GPU vs. Geant4 on CPU 
of up to almost a factor of three thousand. Moreover, the 
evaluation time of our generative models is independent of 
the incident photon energy while this is not the case for the 
Geant4 simulation.

Conclusion

The accelerated simulation of calorimeters with generative 
deep neural networks is an active area of research. Early 
works [1, 25, 26] established generative networks as a fast 
and very promising tool for particle physics and simulated 
the positron, photon, and charged pion response of an ideal-
ised perfect calorimeter with three layers and a total of 504 
cells ( 3 × 96 , 12 × 12 , and 12 × 6).

Using the WGAN architecture and an energy constrainer 
network [28] allowed the correct simulation of the observed 
total energy of electrons for a calorimeter consisting of seven 
layers with a total of 1260 cells ( 12 × 15 cells per layers). 
However, a mismodelling of individual cell energies below 
10 MIPs, also leading to an observed deviation in the hit 
multiplicity distribution, was observed and studied. Our 
implementation of a WGAN based on [28] reproduces this 
effect (see Fig. 6 (left)). The proposed BIB-AE architecture 

with additional MMD loss term and Post Processor Network 
leads to a reliable description of low energy deposits.

The ATLAS collaboration also reported the accurate sim-
ulation of high-level observables for photons in a four-layer 
calorimeter segment with a total of 276 cells ( 7 × 3 , 57 × 4 , 
7 × 7 and 7 × 5 ) using a VAE architecture [31] and 266 cells 
using a WGAN [32]. Recent progress was made applying a 
GAN architecture to simulating electrons in a high granu-
larity calorimeter prototype [29]. The considered detector 
consists of 25 layers with 51 × 51 cells per layer, leading 
to a total of 65k cells to be simulated. On this very chal-
lenging problem, good agreement with Geant4 was achieved 
for a number of differential distributions and correlations 
of high-level observables. Specifically, the per-cell energy 
distribution was not reported, however the disagreement in 
the hit multiplicity again implies a mismodelling of the MIP 
peak region.

Our specific contribution is the first high fidelity simu-
lation for a number of challenging quantities relevant for 
downstream analysis, including the overall energy response 
and per-cell energy distribution around the MIP peak, for a 
realistic high-granularity calorimeter. This is made possible 
by the first application of the BIB-AE architecture—unify-
ing GAN and VAE approaches—in physics. Modifications 
to this architecture, specifically an additional kernel-based 
MMD loss term and a Post Processor Network, were devel-
oped. These improvements can potentially also be applied 
to other generative architectures and models. Planned 
future work includes the extension of this approach to also 
cover multiple particle types, incident positions and angles 
towards a complete, fast, and physically reliable synthetic 
calorimeter simulation.

Table 1  Overview of 
computational performance of 
WGAN and BIB-AE model, 
compared to Geant4 full 
simulation

Evaluated on both a single core of a IntelⓇ XeonⓇ CPU E5-2640 v4 (CPU) and NVIDIAⓇ V100 with 
32 GB of memory (GPU). Numerical values represent the mean and standard deviation of 25 runs

Simulator Hardware Batch size 15 GeV Speed-up 10–100 GeV Flat Speed-up

Geant4 CPU N/A 1445.05 ± 19.34 ms – 4081.53 ± 169.92 ms –
WGAN CPU 1 64.34 ± 0.58 ms ×23 63.14 ± 0.34 ms ×65

10 59.53 ± 0.45 ms ×24 56.65 ± 0.33 ms ×72
100 58.31 ± 0.93 ms ×25 58.11 ± 0.13 ms ×70
1000 57.99 ± 0.97 ms ×25 57.99 ± 0.18 ms ×70

BIB-AE CPU 1 426.60 ± 3.27 ms ×3 426.32 ± 3.62 ms ×10
10 422.60 ± 0.26 ms ×3 424.71 ± 3.53 ms ×10
100 419.64 ± 0.07 ms ×3 418.04 ± 0.20 ms ×10

WGAN GPU 1 3.24 ± 0.01 ms ×446 3.25 ± 0.01 ms ×1256
10 6.13 ± 0.02 ms ×236 6.13 ± 0.02 ms ×666
100 5.43 ± 0.01 ms ×266 5.43 ± 0.01 ms ×752
1000 5.43 ± 0.01 ms ×266 5.43 ± 0.01 ms ×752

BIB-AE GPU 1 3.14 ± 0.01 ms ×460 3.19 ± 0.01 ms ×1279
10 1.56 ± 0.01 ms ×926 1.57 ± 0.01 ms ×2600
100 1.42 ± 0.01 ms ×1017 1.42 ± 0.01 ms ×2874

5 The time evaluation of the GAN network is not reported since the 
generator architecture is very similar to the WGAN.
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Appendix: Network Architectures 
and Training Procedure

The network architectures of generative models have a 
large number of moving parts and the contributions from 
various generators, discriminators, and critics need to 
be carefully orchestrated to achieve good results. In the 
following we provide details of the implementation and 
training for the GAN, WGAN, and BIB-AE models. Due 
to the high computational cost of the studies—e.g., the 
BIB-AE was trained for a total of four days in parallel on 
four NVIDIA Tesla V100 (32 GB) GPUs—no systematic 
tuning of hyperparameters was performed. For all archi-
tectures a good modelling of the Geant4 training distribu-
tions was used as stopping criterion. All architectures are 
implemented in PyTorch [60] version 1.3.

GAN Training

Our implementation of the simple GAN is inspired by [1, 
25, 26] and it should serve as an easy to implement base-
line model consisting of a generator and a discriminator. 
In total, the generator has 1.5M trainable weights and the 
discriminator has 2.0M weights. We therefore did not con-
sider additional modifications to the GAN approach such 
as training with a gradient penalty term.

The generator network of the GAN consists of 3-dimen-
sional transposed convolution layers with batch normali-
zation. It takes a noise vector of length 100, uniformly 
distributed from −1 to 1, and the true energy labels E as 
inputs. A first transposed convolution with a 43 kernel 
(stride 1) is applied to the noise vector multiplied by E. 
The main transposed convolution consists of four layers. 
The first three layers have a kernel size of 43 (stride 2) fol-
lowed by batch normalization. The final layer has a kernel 
size of 33 (stride 1). All layers use ReLU [61] as activation 
function.

The discriminator uses five 3-dimensional convolution 
layers followed by two fully connected layers with 257 
and 128 nodes respectively. The convolution layers use 
a 33 kernel. The stride is 2 for all convolutional layers. 
Batch normalisation [62] is applied after each convolution 
except in the first and last layer. We flatten the output of 
the convolutions and concatenate it the with input energy 
before passing it to the fully connected layers. Each fully 
connected layer except the final one uses LeakyReLU [63] 
(slope: −0.2 ) as an activation function. The activation in 
the final layer is sigmoid.

For training, we use the Adam optimizer [64] (learning 
rate 2 × 10−5 ). The training process starts from updating 
the discriminator for real and fake showers. After that we 

freeze the parameters of the discriminator and update the 
generator with a new generated batch of fake showers. 
The generator and discriminator are trained alternating 
until the training is stopped after 125k weight updates—
corresponding to approximately six epochs—when good 
modelling of the control distributions is achieved.

WGAN Training

The WGAN architecture, based on [27, 28], consists of 
three networks: one generator with 3.7M weights, one critic 
with 250k weights, and one constrainer network with 220k 
weights. The critic network starts with four 3D convolution 
layers with kernel sizes (X, 2, 2) with X = 10, 6, 4, 4 which 
have 32, 64, 128, and 1 filters respectively. LayerNorm [65] 
layers are sandwiched between the convolutions. After the 
last convolution, the output is concatenated with the E vector 
required for E−conditioning. After that, it is flattened and 
fed into a fully connected network with 91, 100, 200, 100, 
75, 1 nodes. Throughout the critic, LeakyReLU (slope: −0.2 ) 
is used as activation function.

The generator network takes a latent vector z (normally 
distributed with length 100) and true E labels as input and 
separately passes them through a 3D transposed convolution 
layer using a 43 kernel with 128 filters. After that, the outputs 
are concatenated and processed through a series of four 3D 
transposed convolution layers (kernel size 43 with filters of 
256, 128, 64, 32). LayerNorm layers along with ReLU acti-
vation functions are used throughout the generator.

The energy-constrainer network is similar to the critic: 
three 3D convolutions with kernel sizes 33 , 33 and 23 along 
with 16, 32, and 16 filters are used. The output is then fed 
into a fully connected network with 2000, 100, and 1 nodes. 
LayerNorm layers and LeakyReLU (slope: −0.2) are sand-
wiched in between convolutional layers.

The WGAN is trained for a total of 131k weight updates 
which corresponds to 20 epochs. The generator and critic 
network are trained using the Adam optimizer with an initial 
learning rate of 10−4 . The learning rate is decreased by a 
factor of 10 each after the first 50k and after a total of 100k 
iterations. For the critic, the initial learning rate is 10−5 . It 
is reduced by a factor of 10 after 50k iterations. Finally, 
the constrainer network is trained using stochastic gradient 
descent [66] with a learning rate of 10−5 . After 30k itera-
tions, the constrainer weights are frozen. The training of the 
WGAN took one week on three NVIDIA Tesla V100 GPUs.

BIB‑AE Training

Our implementation of the BIB-AE architecture consists of 
an encoder and a decoder, a latent space critic, a pair of 
critic and difference critic, and a network for post process-
ing, and has 71M weights in total. Of these, 35M weights 
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are used by the encoder. This is a significantly larger number 
of weights than what can be found in the GAN and WGAN 
models, however this can largely be attributed to the use of 
fully connected layers in the BIB-AE, while both GANs are 
almost purely convolutions. Regardless of this weight dis-
crepancy both models remain comparable, since their total 
computing time is in the same order of magnitude, as can 
be seen in Table 1.

The encoder consists of four 3-dimensional convolution 
layers with kernel size 43 , 43 , 43 and 33 , stride 2, 2, 2 and 1 
and 8, 16, 32 and 64 filters. After each convolution Layer-
Norm is applied. The final convolution has an output shape 
of 64 × 5 × 5 × 5 . This output is flattened, concatenated 
with the true energy label, and passed to a series of dense 
layers with 8001, 4000, 32 and 2 × 24 nodes. The two sets 
of 24 final outputs are interpreted as � and � and are used 
to define 24 Gaussian distributions. We sample once from 
each Gaussian to form the latent representation of the input 
shower. These 24 values are passed to the decoder.

The decoder takes the 24 latent-samples and concatenates 
them with 488 points of random Gaussian noise as well as 
the true energy label. The resulting tensor is then passed 
to dense layers with 513, 768, 4000 and 8000 nodes. We 
reshape the output of the dense layers to 8 × 10 × 10 × 10 . 
Using two transposed convolution layers with kernel sizes 33 
and 33 , strides 3 and 2, and 8 and 16 filters respectively this 
is upsampled to 16 × 60 × 60 × 60 and then reduced back 
down to 8 × 30 × 30 × 30 by a kernel-size 23 , stride 2 convo-
lution. This is followed by four more convolutions, all with 
kernel-size 33 and stride 1 with 8, 16, 32, and 1 filters respec-
tively. Once again each (transposed) convolution except for 
the last one is followed by LayerNorm. Both encoder and 
decoder use LeakyReLU as intermediate activation func-
tions. The final encoder layer has a linear, the final decoder 
layer a ReLU activation.

The BIB-AE latent space critic is a fully connected net-
work with 1, 50, 100, 50, and 1 nodes using LeakyReLU 
activation. The critic is trained using samples from a Normal 
distribution as true data and using the latent space samples 
as fakes. Each of the 24 sampled latent space variables is 
passed individually to the critic.

The BIB-AE critic and difference critic are built as a 
combined network with four input streams. The first stream 
takes the 30 × 30 × 30 shower image as input and applies 
three convolutions with kernel-size 33 , 33 , and 33 , stride 2, 
2, and 1, and 128, 128, and 128 filters, reducing the input to 
128 × 4 × 4 × 4 . The convolutions are interspersed with Lay-
erNorms. The convolutional output is flattened and passed 
to a dense layer with 64 output nodes. The second stream 
is nearly identical to the first one, except the input is scaled 
by adding one and applying the natural logarithm. The third 
stream consists of a single dense layer with 303 = 27,000 
input and 64 output nodes. The input to this stream is the 

flattened difference between the reconstructed image and the 
original image. Finally, we use the true energy label as input 
to the fourth stream. It consists of one dense layer with one 
input and 64 outputs.

The 64 outputs from each of the four streams are con-
catenated and passed to a final set of dense layers with 256, 
128, 128, 128, 1 nodes. We once again use LeakyReLU eve-
rywhere except for the final layer, which has a linear activa-
tion. During training the first two streams receive Geant4 
images as real data and reconstructed images as fakes. The 
third stream receives Geant4-Geant4 as real and Geant4-
reconstructed as fake. The fourth stream always receives the 
true energy label.

The Post Processor Network also has two streams. The 
first takes a 30 × 30 × 30 image as its input and applies a ker-
nel-size 13 , stride 1 convolution with 128 filters. The second 
one takes the true energy label and the sum over all pixels in 
the input image as its input. These are passed to dense layers 
with 2, 64, 64, 64 nodes, the output of which is expanded to 
a 64 × 30 × 30 × 30 shape. The tensor is then concatenated 
along the filter dimension with the 128 × 30 × 30 × 30 out-
put of the first stream. The combined object is passed to 
five more convolutions, all with kernel-size 13 , stride 1 and 
128, 128, 128, 128, and 1 filters. As before, convolutions are 
interspersed with LayerNorms. We use LeakyReLU save for 
the last layer which uses a linear activation. The use of ker-
nel-size 13 means that the same function is applied to every 
pixel value. However the intermittent LayerNorms cause the 
precise functions to be different for each individual shower 
as well as for each pixel within the showers. As a result, each 
shower has its own set of 27,000 functions that behave very 
similarly, but are still tailored to each of the 27,000 possible 
pixel positions.

The setup is initially trained for 35 epochs without the 
Post Processor, the evolution of the individual loss contri-
butions during this training is shown in Fig. 12. The ini-
tial learning rates are 0.5 × 10−3 for encoder, decoder and 
the critic, and 2.0 × 10−3 for the latent critic. All learning 
rates decay by 0.95 after each epoch. For each encoder/
decoder update we update the critics five times. After these 
35 epochs we train the Post Processor for one epoch using 
only the MSE term. This ensured the Post Processors base-
line behaviour is to make as little changes to the images as 
possible. For three subsequent epochs the Post Processor is 
trained using a combination of MSE and MMD, with the 
same learning rate as the encoder/decoder. The initial 35 
epochs of training took 3 days on four NVIDIA Tesla V100 
(32 GB) GPUs and the Post Processor training lasted for 
one additional day. We save checkpoints after each epoch. A 
composite figure of merit combining a number of 1D distri-
butions was used to evaluate when stopping was warranted 
and to select which checkpoint shows the best agreement 
with the training data.
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