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Abstract
In actual welding scenarios, an effective path planner is needed to find a collision-free path in the configuration space for
the welding manipulator with obstacles around. However, as a state-of-the-art method, the sampling-based planner only
satisfies the probability completeness and its computational complexity is sensitive with state dimension. In this paper, we
propose a path planner for welding manipulators based on deep reinforcement learning for solving path planning problems
in high-dimensional continuous state and action spaces. Compared with the sampling-based method, it is more robust and is
less sensitive with state dimension. In detail, to improve the learning efficiency, we introduce the inverse kinematics module
to provide prior knowledge while a gain module is also designed to avoid the local optimal policy, we integrate them into
the training algorithm. To evaluate our proposed planning algorithm in multiple dimensions, we conducted multiple sets of
path planning experiments for welding manipulators. The results show that our method not only improves the convergence
performance but also is superior in terms of optimality and robustness of planning compared with most other planning
algorithms.

Keywords Path planning · Obstacle avoidance · Welding manipulator · Deep reinforcement learning · Inverse kinematics

Introduction

Welding tasks exist in various industrial manufacturing pro-
cesses. Especially in the shipbuilding process, weldingwork-
load accounts for 40% of the total workload. Shipbuilding,
known as a labor-intensive industry, requires a considerable
number of skilled technicians to weld in enclosed and haz-
ardous surroundings. Thanks to the development of industrial
robotics, automated welding is gradually replacing manual
welding by means of equipping welding manipulators on the
shipbuilding production line [1,2]. Nonetheless, path plan-
ning for a specific welding task such as spot welding or
arc welding, which is often completed by skilled welding
technicians with an offline programming teach pendant, is
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still challenging automated welding. When dealing with a
complex welding task operated on different workpieces with
various shapes, it is rather tedious teaching on-line or pro-
gramming off-line due to the existent of multifarious pose
switching of the welding torch which demands many path
planning queries. In view of the demand for flexible and
high-efficiency welding, a reliable, safe, and automated path
planning technology serving for pose switching of the weld-
ing torch is urgently needed.

In the field of welding, the term path planning may be for-
mulated as a constrained Traveling Salesman Problem (TSP)
[3] while in this paper we study a new method to find an ele-
gant collision-free path in configuration space of the welding
manipulator which connects the initial configuration and the
target configuration [4].

Most existing path planning methods for robots focus on
their performance in one domain they pursue. The sampling-
based method is one of the most popular path planning meth-
ods owing to its probabilistic completeness. The sampling-
based planning algorithms mainly include the multi-query
algorithm Probabilistic Roadmap Method(PRM) [5,6] and
the single-query method Rapidly exploring Random Trees
(RRT) [7,8]. The algorithms mentioned above can almost
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always find a feasible path (i.e., a sequence of valid states)
when sampling in low-dimension state space like a 2-D or
3-D map for wheeled mobile robots [9,10] and Unmanned
Aerial Vehicle [11]. However, when searching for a feasi-
ble path in high-dimension state space like the configuration
space of a six-DOF welding manipulator, the computational
complexity of the sampling-based method shows an expo-
nential growth trend due to the dimensional explosion of
sampling space. To better apply the sampling-based algo-
rithms to the high-dimension path planning(e.g. manipulator
planning), many improved methods have been proposed. In
[12], a new variation path planning method based on PRM
and lazy-PRM for industrial manipulators was proposed to
reduce the time spent on the roadmap construction. Cao et. al.
adopted the idea of target gravity to accelerate the path search
speed in [13] and in [14] an improved sampling-basedmethod
using learned critical sources and local sampling is devel-
oped to go through narrow passages more quickly. Despite
the fact that those methods increase the planning efficiency
and inherit the superiority of traditional RRT algorithm, the
sampling-based planning method is actually a probabilistic
search-based offline method with uncertainty and the plan-
ning time may tend to infinity in a complex environment
especially a narrow passage.

One of the alternativemethods for high-dimensionmanip-
ulator path planning is based on Artificial Potential Field
(APF) which is an online method proposed in [15]. Com-
pared with the sampling-based search algorithm mentioned
before, the APF algorithm plans the same path each time
for the same task which is meaningful in industrial scenario
[16] while both of the two algorithms’ performance suffers
from finding a path in high-dimension state space. Further-
more, it should be noted that the APF algorithm, as a local
planner, may converge to a local optimal solution and lacks
completeness. In view of the aforementioned characteristics,
scholars have proposed many improved APF algorithms for
path planning in high-dimension state space such as [17,18].
Another path planning method treats the path planning prob-
lem as a constrained optimal control problem and solves it by
a nonlinear model predictive controller (MPC) [19], but this
method is model dependent and requires computing power
and memory resources. What is even more unacceptable is
that it is a local planning algorithm as APF does.

With the development of machine learning and deep
learning, the learning-based method becomes an elegant
alternative method for robot path planning [20]. For exam-
ple, the Motion Planning Networks(MPNet) based on deep
learning [21] aims to train a model that is able to gener-
ate an end-to-end collision-free path in the obstacle space
for the given start and goal configurations of a robot, yet
the representation of the whole workspace with obstacles
is needed and its completeness depends on the replanning
method(e.g. RRT). Nevertheless, the existing learning-based

planning methods often rely on traditional search algorithms
(such as RRT) or optimal control algorithms, so that they
inevitably inherit the disadvantages of basic algorithms. In
addition, a large amount of sample data is needed, and sam-
pling efficiency needs to be improved urgently. There is still
a need to balance exploration and utilization to obtain better
performance.

In recent years, owing to the amazing performance of var-
ious robot controllers or planners based on Deep Reinforce-
ment Learning (Deep-RL) as described in [22–26], many
researchers turn toDeep-RLwhich shows excellent prospects
for solving path planning problems in high-dimensional con-
tinuous state and action spaces. At the same time, deep
reinforcement learning itself has also received more atten-
tion from researchers [27–29]. Xue et al. [30] proposed an
obstacle avoidance path planning method based on a Deep-
RL algorithm applied in discretized actions, they introduced
sub-goals to guide the mobile robot to the final goal. In [31]
a continuous action space Deep-RL algorithm was used for
navigation of a mobile robot in simulated environments and
the authors believe that the continuous Deep-RL algorithm is
an effective collision-free decision-maker for a mobile vehi-
cle.

Compared with the mobile robots, a welding manipulator
with high-dimension continuous action space seems to be
not that easy to handle by Deep-RL algorithms directly due
to the tremendous exploration space and the sampling ineffi-
ciency. The exploration–exploitation trade-off is at the heart
of reinforcement learning which restricts the convergence of
the algorithm thus the balance of exploration and exploita-
tion must be considered when doing path planning using
Deep-RL. In [32] a dynamic obstacle avoidance approach
for robot manipulator base on a continuous Deep-RL algo-
rithm [33]was proposed and awell-designed reward function
was presented to avoid the sparse reward and increase use-
ful exploitation. In Sangiovanni et al. [34], presented a
hybrid control method that combines the Deep-RL pol-
icy and the PRM policy (i.e. a sampling-based method) to
achieve collision-free path planning for anthropomorphic
robot manipulators. Hua et al. [35] proposed a path plan-
ner for a redundant robot in a narrow duct based on the Deep
Deterministic Policy Gradient (DDPG) algorithm [36], this
method reduces the exploration space by decoupling the self-
motion from the motion for obstacle avoidance; however,
the manipulator must be redundant. It can be seen from the
related work above that most scholars try to improve the con-
vergence performance of reinforcement learning by adopting
models which is inherent in the environment. This is indeed
an area worth continuing to study. Aside from reinforcement
learning itself, it is possible to mine information from the
environment so that the agent could have a certain innate
wisdom.
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In this paper, we propose an informed learning-based path
planner for a 6-DOF welding manipulator in the semi-closed
and narrow environment which is common in real welding
scenarios, see in Fig. 1. The model-free Deep-RL algorithm
DDPG is adopted to train an agent that is able to navigate the
welding manipulator in configuration space so that the weld-
ing torch can reach the target position in theworkspacefinally
without any collision on the path. For the purpose of speed-
ing up the convergence, we provide the agent the informed
knowledge by introducing the inverse kinematics of theweld-
ing manipulator. To avoid the agent’s excessive exploitation
due to the prior knowledge and encourage exploration for
obstacle avoidance, we introduce a hybrid method of Deep-
RL and inverse kinematics of robot manipulator which will
be discussed later in detail. Themain contributes of this paper
are as follows:

– Awell-designed interactive environmentwith highfidelity
in simulation scenario is developed. Our modeling
method provides a new physical modeling solution based
on CoppeliaSim as a substitute for gym or mujoco for
Deep-RL algorithms.

– We utilize the inverse kinematics based action as the prior
knowledge to reduce the unnecessary exploration in the
state-action space thus the learning speed is accelerated.

– To avoid excessive exploitation caused by the presence of
prior knowledge based on inverse kinematics, the effect
of the inverse kinematics based action is adjusted dynam-
ically by introducing the gain module.

– We design a method for accelerating deep reinforcement
learning training process by combining a inverse kine-
matics module, which provides researchers with a new
idea that is different from improving the deep reinforce-
ment learning algorithm itself.

The rest of this paper is structured as follows. The theo-
retical background is introduced in the next section followed
by our modified method in the subsequent section. Then we
demonstrate the relevant elegant performance of the pro-
posed method with several experiment results. At last, we
provides the conclusion.

Background

In this section, we give an overview of the background the-
ories for the proposed Deep-RL-based collision-free path
planner, including the kinematics modeling of a welding
manipulator used in this research, the Sequential Decision-
Making model, and the model-free Deep-RL algorithm:
DDPG.

Kinematics modeling

The kinematics of a manipulator mainly studies the displace-
ment relationship, velocity relationship, and acceleration
relationship between different links or joints. In this research,
we shouldmodel the kinematics of the used six-DOFwelding
manipulator as shown in Fig. 1. Denavit–Hartenberg (D–H)
[37] representation has been widely used in kinematic mod-
eling and analysis of series manipulator and has become
the standard method for modeling kinematics. Therefore,
the detailed standard D–H parameters are shown in Table
1. Using the D–H parameters, the Homogeneous Transfor-
mationMatrix (HTM) of the last link relative to the base link
can be obtained as

0
6T (q) =

6∏

i=1

i−1
i T (qi ), (1)

where the q = [q1, q2, . . . , q6] ∈ R
6 is the joint angle

variable drawn from the Configuration Space (C-space),
i−1
i T (qi ) represents the HTM of i th link relative to the one
of the previous links denoted as follows:

i−1
i T (qi ) =

⎡

⎢⎢⎣

cos θi − sin θi cosαi sin θi sin αi ai cos θi
sin θi cos θi cosαi − cos θi sin αi ai sin θi
0 sin αi cosαi di
0 0 0 1.

⎤

⎥⎥⎦

(2)

The last link is usually called an end flange, and an end-
effector with a reference frame is fixed on it, e.g., a welding
torch. In practice, the task is executed by the end-effector in
Cartesian space, and the end-effector’s HTM refer to the base
link can be computed by 0

eT (q) = 0
6T (q) 6eT , for simplicity,

both sides of the equation can be written as

xe = fkine(q), (3)

where xe = [ pe φe]T ∈ R
6 is a pose, with pe being the

three-dimensional position and φe the orientation (e.g. Euler
angles) in the Cartesian space.

Most of the motion specified by the task is defined in
Cartesian space, thus it is inevitable tomap the end-effector’s
Cartesian motion to the motion in joints in C-space. In
robotics, given the end-effector’s Cartesian velocity ẋe rela-
tive to itself, the corresponding velocity of joints’ angles q̇
is as follows:

q̇ = J (q)† ẋe, (4)

where J (q) is a 6× 6 Jacobian matrix for a 6-DOF manipu-
lator, and it can be a known matrix once the joint position q
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Fig. 1 The considered 6-DOF
welding manipulator in the
semi-closed and narrow
environment simulated in a
robot simulation platform
CoppeliaSim

Table 1 Standard D–H parameters of the used welding manipulator

Link i αi (◦) ai (m) di (m) θi (◦)

1 0 0 0.4205 q1

2 − 90 0 0 q2

3 0 0.7260 − 0.1265 q3−90

4 90 0 − 0.0960 q4−180

5 90 0 0.6305 q5

6 − 90 0 0.0910 q6

is given [38]. It is worth noting that the pseudo-inverse of the
matrix J (q)† is computed due to the existence of singularity.

The inverse kinematics (IK) problem of manipulator is to
find a correct and proper joint configuration q drawn from
the C-space which satisfies the equation x∗

e = fkine(q), the
term x∗

e represents the target pose of end-effector.

Algorithm 1 Pseudo-inverse-based method for IK problem
Input: x∗

e : target pose; qini t : initial guess; dt : sampling
period;

Output: solution q∗
1: initial q ← qini t ;
2: repeat
3: compute current pose xe ← fkine(q);
4: compute pose differential Δxe ← xe � x∗

e ;
5: compute the joint velocity q̇inv ← J (q)†Δxe;
6: update the joint position q ← q + q̇invdt ;
7: until (‖Δxe‖ < ε)
8: return q∗ ← q

In general, the traditional solutions to the inverse kine-
matics problem include closed-form solutions and numerical

solutions. The closed-form solutions consist of algebraic
and geometric methods, they solve the problem faster than
numerical solutions yet they depend on the model of manip-
ulator and lack generalization ability. On the other hand, the
numerical solutions do not rely on the model of manipulator
which mainly refer to iterative methods.

Among all of the iterative methods, the algorithm based
on the Pseudo Inverse of the Jacobian matrix [39] and the
one based on Damped Least-Squares(DLS) [40] are most
popular, both of them can converge to an optimal or approx-
imately optimal solution q∗ based on an initial guess qinit .
Unfortunately, sometimes these methods may not converge
to a definite solution due to the presence of singularity or the
initial guess is not proper enough. From the perspective of
optimization theory, the Pseudo Inverse method is faster than
the DLSmethod and can be implemented readily in practice.

In this research, the pseudo-inverse-based method (see in
Algorithm 1) is considered to find a iteration direction in the
C-space which minimizes the error between x∗

e and current
pose xe. In Line 4, we use the difference of poseΔxe instead
of the velocity ẋe in Eq. 4, and then q̇ inv is obtained in Line
5. The Δxe is computed as follows:

xe � x∗
e

.=
[
p∗
e − pe

vex
(
R∗
e R

T
e − I3×3

)
]

, (5)

where the Re ∈ R
3×3 is the rotation matrix form of the

orientation vector φe. The function vex(·) can be seen in
[41] which aims to compute the increment of R∗

e relative to
Re.

TheMarkov decision process

In a wide sense of the word, Reinforcement Learning (RL)
solves the sequential decision problems by finding the deci-
sion sequence which maximizes the expected cumulative
return. AMarkovDecision Process (MDP) is a typical model
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Fig. 2 The interaction between the agent and the environment [42]

of sequential decision problem which is described by a tuple
(S,A, π,P, r , γ, H). In this tuple, S is a complete set of all
existing states, A is a set of all actions, both of them can be
discrete or continuous. The policy π can be divided into a
stochastic one a ∼ π(·|s) and a deterministic one a = μ(s),
where a ∈ A, s ∈ S. The state transition probability function
P : S×A×S → [0, 1] denotes the dynamics of the environ-
ment: the probability of reaching st+1 after taking action at
at the environment state st . In some cases, the state transition
function can be deterministic.

The reward function r = R(st , at ), which is a scalar
obtained from the environment when taking action at at
observing a state st , implies the goal of a RL problem. Until
now, we can use the MDP and π to generate sequence as
follows:

s0, a0, r0, s1, a1, r1, s2, . . . , sH−1, aH−1, rH−1, sH ,

where H ∈ N
+ is a time or step horizon of an episode. It is

also called a trajectory which is generated by the interaction
between the agent and the environment, see in Fig. 2. The
agent mainly plays the role of a policy π while the environ-
ment define the state transition model and output the reward
signal.

The discounted return at time step t is defined as follows:

Gt
.=

H−t−1∑

k=0

γ k R (st+k, at+k) , 0 ≤ t < H , (6)

where the term γ ∈ [0, 1] denotes the discount factor. To
evaluate the performance of the policy π , we can compute
the expectation of the total reward in one episode:

Jπ = Eπ

[
H−1∑

t=0

γ t R (st , π(·|st ))
]

, (7)

where the policy and the environment models are stochastic.
In general, the RL algorithms aim to find the optimal or

asymptotically optimal policy π∗
θ (·|s) with parameters θ . In

recent years, scholars use deep neural networks (DNN) to

Algorithm 2 Deep Deterministic policy gradient
1: Initialize: The predicted actor network μ(s) and critic

network Q(s, a) with weights θμ and θQ

2: Initialize: The target actor network μ̄(s) and critic net-
work Q̄(s, a) with weights θ̄μ ← θμ and θ̄Q ← θQ

3: Initialize: The replay buffer R
4: for episode=1,N do
5: Initialize a random process N for exploration
6: Reset the environment and observe the s0
7: for t=0,T-1 do
8: Select an action at = μ(st ) + N
9: Execute at at the environment
10: Get the reward rt and next state st+1

11: Store the transition (st , at , rt , st+1) inR
12: Sample a minibatch of M transitions inR:

(si , ai , ri , si+1) where i = 1, ..., M

13: Set yi = ri + γ Q̄(si+1, μ̄(si+1))

14: Update network Q(s, a) by minimize the loss:

L = 1
M

∑
i (yi − Q(si , ai ))2

15: Update network μ(s) with the sampled policy gra-
dient:

∇θμ J = 1
M

∑
i ∇θμQ(s, a)|s=si ,a=μ(si )

16: Soft update target networks

θ̄μ ← τθμ + (1 − τ)θ̄μ

θ̄Q ← τθQ + (1 − τ)θ̄Q

17: end for
18: end for

represent the parameters of policy and therefore the iteration
of policy is carried out by training the policynetworkweights.
This method is called Deep Reinforcement Learning (Deep-
RL) which interests more and more researchers all over the
world from different domains [43] such as robotics.

Deep deterministic policy gradient

In this subsection, we focus on one of the state-of-the-art
Deep-RL algorithm: deep deterministic policy gradient algo-
rithm (DDPG) which was proposed in [36] and it is shown
in Algorithm 2. This algorithm is suitable for training an
agent or policy to control a robot such as a 6-DOF welding
manipulator to accomplish a specify task with position or
torque, because its policy can output an action that is high
dimensional and continuous.

The motivation of DDPG is actually to allow Deep Q-
learningNetwork [44] to expand to continuous action domain
with a deterministic actor. Like the algorithm DQN, a pio-
neering work that combines reinforcement learning and the
deep learning,DDPG trains an action-value function network
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Qπ (s, a) to approximate the Bellman function:

Qπ (st , at ) = Eπ [Gt |st , at ] , (8)

where the deterministic policy π is a = μ(s)whichmaps the
current state to a specific action. The action-value function
network is trained by minimize the loss function:

L(θQ) = E

[(
Q

(
st , at |θQ

)
− yt

)2]
, (9)

where the label yt is given by

yt = R(st , at ) + γ Q
(
st+1, μ

(
st+1

∣∣θ̄μ
)∣∣ θ̄Q

)
(10)

inwhich the action-value network Q
(
s, a|θ̄Q

)
and the policy

networkμ
(
s|θ̄μ

)
represents the target network, respectively.

The purpose of introducing target network is to make the
training process more stable.

On the other hand, the DDPG algorithm utilize the actor-
critic framework-based DPG algorithm [45] to maintain the
policyμ(s), and in this framework, the action-value network
is called critic network while the policy network is called
actor network. The deterministic policy gradient is proved to
be as follows:

∇θμ J = E

[
∇aQ

(
s, a|θQ

)
|s=st ,a=μ(st )∇θμμ

(
s|θμ

) |s=st

]

(11)

which represents the performance of the actor network, we
can update the actor network using this equation.

An experience replay buffer which is designed for off-
policy updating denoted as R is used to store the transition
tuple (st , at , rt , st+1) see in Algorithm 2 Line 11. The pre-
dicted network θμ and θQ are updated using Eqs. 11 and 9,
respectively, with the sampled minibatch experience replay
transitions. To train the target network more stably, a soft
update technic as Algorithm 2 Line 16 shows is employed.

Due to the determinacy, the actor may coverage to a local
optimum, and this is harmful to the agent to explore for higher
reward in the environment. Thus, in Algorithm 2 Line 8, a
stochastic process noise,Ornstein–Uhlenbeck, is added to the
actor’s action to enhance exploration and protect the robot in
the environment at the same time.

Methodology

In this section,we introduce in detail the hybrid collision-free
path planningmethod ofDeep-RL and inverse kinematics for
the 6-DOF welding manipulator.

The interaction environment

To solve the path planning problem with the Deep-RL
framework, we must convert the primal problem to a sequen-
tial decision problem, namely the Markov decision process
(MDP). To this end, we need to define the interface between
the agent and the environment in Fig. 2.

State space

In the real world, the state set may be extremely massive
or even infinite, so enumerating all the states is unrealistic.
In practice, we usually select some important characteris-
tics as the state information. It should be noted that the
state information of Deep-RL represents the environmental
information perceived by the agent and implies the influence
brought about by the actions of that agent. State information
is the basis for the agent to make decisions and evalu-
ate its long-term benefits, namely accumulative reward, and
the quality of the state design directly determines the con-
vergence, convergence speed, and final performance of the
Deep-RL algorithm.

Task analysis is the soul of state design. In this research,
the goal of the collision-free path planning task is to train
an agent that drives the joints of the welding manipulator
without any collision to minimize the distance between the
end-effector of the welding manipulator and its target posi-
tion. In the light of the given task, the state observed from the
environment at time step t is designed as a stacked vector:

st = [
q, pe, dtar, collision

] ∈ S, (12)

where q ∈ R
6 is the joint positionof theweldingmanipulator,

and pe ∈ R
3 is the end-effector reference frame’s Cartesian

position relative to the target frame. The scalar dtar denotes
the Euclidean distance between the end-effector reference
frame’s origin and the origin of the target frame. The last
element collision is a Boolean that indicates whether the
collision occurs between the links of theweldingmanipulator
and obstacles in the environment, it can be obtained by the
CoppeliaSim API function. It is obvious that the dimension
of the state vector is

dim(st) = dim(q) + dim( pe) + 2, (13)

where dim(·) means the dimension of a vector.

Action space

When applying Deep-RL algorithm to an actual problem,
perhaps the most intuitive part is the definition of the action
space A. In this research, the actor in the environment is
a 6-DOF welding manipulator; thus, the control method of
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Fig. 3 This is the schematic diagram of our method. In this diagram, apart from the DDPG learning framework, we add an Inverse kinematics
module in series with a gain module. The Update1 represents the update of the network Q(s, a) and the Update2 represents the update of the
network μ(s)

the agent for the manipulator can be velocity control mode
intuitively as follows:

at = q̇ ∈ A, (14)

where q̇ ∈ R
6 is the target angular velocity within the lim-

itation of each rotation joint driven by a servo motor. The
dimension of the action space is

dim(at) = 6 (15)

Reward signal

Contrary to the definition of action space mentioned afore-
hand, the reward signal, which implies the goal of the
specified problem, determines whether the agent can finally
learn the desired skills, and directly affects the convergence
speed and final performance of the algorithm as the state
space does. After considering our problem, we define the
reward signal consists three parts.

The first part is designed for the end-effector approaching
a specific target position. We utilize a nonlinear piecewise
function to compute this part of the reward:

r1 =
{

− 1
2d

2
tar dtar ≤ δ

−δ
(|dtar| − 1

2δ
)

dtar > δ,
(16)

where dtar is the Euclidean distance between the end-effector
and its target position, the parameter δ is the turning point of
the function. The popular explanation for r1 is the longer the
distance dtar, the smaller the reward.

The second part is designed for the purpose of avoiding
collision, so in this part, we give a large penalty according to
the current collision condition.

r2 =
{

−Co if collision

0 otherwise
, (17)

where Co ∈ R
+ is a constant by which we can regulate the

penalty. The collision state collision is a Boolean as men-
tioned in Eq. 12.

The third part is relative to the norm of the current action
q̇ as shown in Eq. 18, that means we expect the agent to take
smaller actions for safety.

r3 = −‖q̇‖2 . (18)

Finally,we can construct the total reward signal as follows:

rt (st , at) = λ1r1 + λ2r2 + λ3r3 ∈ R, (19)

where λi ∈ R
+ denotes the constant scaling factor which is

designed to make the contribution of each reward component
to the final reward at a close level, so that each target reward
can be taken into account by the agent to the same extent.
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The training process

Although the Deep-RL algorithm DDPG as shown in Algo-
rithm 2 has achieved elegant results on many robotic opera-
tion tasks in Mujoco environment such as reacherObstacle
in which the agent is required to move a 5-DOF manipula-
tor to the target position without collision, the complexity
of learning mapping relationship between state space S and
action space A in the path planning problem is so high that
it requires amazing training time steps and even millions of
steps are commonplace.

To be honest, training a policy model for a path planning
problem from scratch using theDDPGalgorithm is irrational.
Thus, in this paper, we aim to speed up the DDPG training
process for the collision-free path planning problem via a
hybrid method of DDPG and inverse kinematics of the weld-
ing manipulator as shown in Fig. 3.

The path planning problem for a welding manipulator
actually contains two sub-problems, one is moving the end-
effector to its target position while the other is avoiding
collision during the moving process. If the collision avoid-
ance is not in consideration, moving the end-effector to its
target position can be solved by a sequential dynamic model
shown in Eq. 20.

q t+1 = qt + q̇ inv · dt, (20)

where dt is the sampling period, q̇inv is obtained as Line 5,
Algorithm 1 shows.

Due to the presence of obstacles, we need to correct the
q̇ inv generated by the inverse kinematics module to avoid
collision. To this end, we might as well use the action at
selected by the policy network of DDPG to share the task of
avoiding obstacles as Eq. 21 shows.

q t+1 = qt + (q̇inv + at) · dt. (21)

In this way, there is no need for the DDPG agent to learn
from scratch since the inverse kinematics module will con-
straint the search space between the start and goal region
as well as guide the welding manipulator move to the target
position so that the agent’s responsibility is just to correct the
output of inverse kinematics module for collision avoidance.
In other words, the invalid exploration which discourage the
welding torch moving to the target position is lessened, thus
the search space is reduced significantly which is beneficial
to speed up the training process of the agent.

However, we find that when training with dynamic model
Eq. 21, the excessive exploitation of the inverse kinematics
module leads the agent to overlook the objective of collision
avoidance and the policy converge to local a optimum. We
blame this failure on the changeless usage of q̇inv generated
by the inverse kinematics module. It is the fixed q̇inv that

Algorithm 3 Hybrid of DDPG and inverse kinematics
1: Initialize: actor networks and critic networks
2: Initialize: replay buffer R
3: for episode=1,N do
4: Initialize a random process N for exploration
5: Reset the environment and observe the s0
6: for t=0,T-1 do
7: Select an action at = μ(st) + N
8: Get G(t)q̇inv as correction of at
9: update the environment using Equation 23
10: Get the reward rt and next state st+1

11: Store the transition (st , at , rt , st+1) inR
12: Sample a minibatch of M transitions inR
13: Update actor network and critic network
14: Soft update target networks
15: end for
16: end for

restricts the exploration of the agent for collision avoidance.
Thus we add a time-varying gainmodule to encourage explo-
ration in the early time of one episode with a relatively large
growth rate and increase the exploitation in the later time by
applying a lower growth rate when the manipulator ought to
be near the goal position. The gain module is an increasing
nonlinear function ln(x) of time step t as shown in Eq. 22.

G(t) = ln(t + 1), (22)

where t = 0, . . . , T−1 and the hybrid dynamicmodelwhich
balances the exploitation and exploration is as follows:

qt+1 = qt + (G(t) · q̇inv + at
) · dt . (23)

The integral training process of our collision-free path
planning method is described in Algorithm 3.

Experiments and analysis

In this section, we evaluate the performance of our proposed
hybrid method through several path planning experimental
results in the simulation system. We also prove the progress
of our method through comparative analysis.

Experimental system description

The simulation experiment system is roughly divided into
three parts. The first part is the interaction environmentwhich
mainly includes a welding manipulator with obstacle around
it as shown in Fig. 1 and we model them in a well-known
open-source robot simulator CoppeliaSim with high fidelity.
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Table 2 Choice of key parameters for the DDPG agent

Parameter Value

Mini-batch size M 128

Number of episodes N 5000

Max episode step T 120

Discount factor γ 0.99

Soft update factor τ 0.001

Replay buffer size 2e5

Learning rate of actor network 1e−3

Learning rate of critic network 1e−4

Size of hidden layer 128

Action dimension 6

State dimension 11

The simulator CoppeliaSim provides remote interface func-
tions for collision detection between specific robot entity and
obstacles, thus we can determine the Boolean collision in
Eq. 17which indicateswhether any collision occurswhen the
welding manipulator is at a certain joint angle q . In general,
this part, as a server application, provides an interface for the
exchange of state information and action input as shown in
Fig. 2. When receiving the action information, namely the
joints’ angular velocity q̇ ∈ R

6 predicted by the agent, the
environment server application will update the current state
st of the welding manipulator as described in Eq. 12 to its
transition state st+1, and the joints’ angle is updated with Eq.
23, where dt is set to 0.05 in second. To make the simulation
closer to the real situation, wemust constraint the action at or
q̇ in a bounded range: q̇min ≤ q̇ ≤ q̇max. In the meanwhile
the joint angle q should meet the joint limit requirements
which are very crucial to the safety of the welding manip-
ulator, otherwise, the links of the welding manipulator may
collide with each other.

After the update of the state, the acquisition of the instant
reward signal instead of a sparse one is pivotal. The constant
parameterswhich formulate the reward signal are instantiated
as follows: the δ in Eq. 16 is set to 0.05, theCo in Eq. 17 is set
to 200, the λi in Eq. 19 set to λ1 = 2000, λ2 = 1, λ3 = 1,
respectively. It needs to be pointed out that these param-
eters are carefully picked up through a large number of
experiments. Different parameters will directly affect the
convergence of the algorithm.

The second part is the DDPG agent represented by four
fully connected deep neural networks constructed by a
famous deep learning framework Pytorch and their respec-
tive updatemethod for internal neural networkweights.All of
those networks are trained by anAdam optimizer using a cer-
tain number (Mini-batch size M) of transitions data sampled

Fig. 4 The relation chart of the simulation system

from the replay buffer R at each time step. All of the afore-
mentioned four networks including two actor networks and
two critic networks have two hidden layers respectively. The
actor networks approximate the deterministic policy function
at = μ(st); thus, the dimension of the input layer equals to
the state dimension dim(st) while the output layer equals to
dim(at). On the other hand, the critic networks approximate
the action-value function Q(st , at) thus the dimension of the
input layer equals to the sumof the action dimensiondim(at)
and the state dimension dim(st) while the dimension of the
output layer equals to one because the action value is a real
scalar. The choice of key parameters for the DDPG agent is
shown in Table 2.

The third part is the inverse kinematics module. We per-
form the inverse kinematics calculation according to the
current position of joints q to obtain q̇inv at each time step.
This part will be executed in Matlab. More specifically, we
set up a pure kinematic model of the welding manipulator
synchronize with the one in simulator CoppeliaSim, and the
instantaneous Jacobian matrix as shown in Eq. 4 is computed
at each time step which is used to obtain q̇inv.

These three parts communicate through remote Applica-
tion Programming Interface (API) or engine as shown in Fig.
4. The whole training phase is implemented on a PC (CPU
3.6 GHz, RAM 16 GB).

Experimental results and analysis

In various algorithmsof pathplanning, the proposed learning-
based path planning algorithm can be classified as a global
and single query path planningmethod. To validate the effec-
tiveness of the proposed method, we test the learning-based
planner with three different path planning tasks. Each task
was specified with an initial position qs ∈ R

6 drawn from
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Fig. 5 The learning curves of the training process for three tasks which different gain module G(t). These curves represent the convergence of
different training strategies

Fig. 6 The path planning solutions conducted by our method for three single-query tasks rendered in CoppeliaSim. For each solution, we select
some pivotal way points to express the complete safe path

the configuration space and a target end-effector’s Cartesian
position p∗

e ∈ R
3 relative to the welding manipulator’s ref-

erence frame.

Performance evaluation

We evaluate the performance of our method on the three
single-query test tasks from different domains. First of all, it
is known that the objective of the Deep-RL algorithm is to
maximize the cumulative reward in one episode with finite

time steps and, therefore, it is necessary to analyze the trend
of the reward curve or the learning curve vs training episode
number which reflects whether the target deterministic pol-
icy model has converged as well as the learning efficiency.
We show the learning curves of the three test tasks, respec-
tively, in Fig. 5. For each specified path planning task, we
train the policy model using different gain module noted as
G(t). When G(t) = 0, it means that the inverse kinematics
module is removed and the agent should learn from scratch
which is abandoned in our research. To exploit the inverse
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Fig. 7 Distance between the current end-effector’s Cartesian position and the target Cartesian position

Fig. 8 Cartesian position of the end-effector of the welding manipulator along the path in the workspace of the welding manipulator

Fig. 9 Performance comparison of our algorithm and sampling-based algorithms by three histograms, where a illustrates the success rate while b
and c illustrates average path length in C-space and Cartesian space, respectively

kinematics module during the training phase, we need a non-
zero G(t); thus, we adopt G(t) = ln(t + 1) as shown in
Eq. 22. To reveal the progress of the proposed time-varying
gain module, we also adopt a fixed gain module G(t) = 2
as contradistinction. After comparison, we find that different
selection of gain module G(t) leads to significantly different
learning curve when dealing with the same task. Our method
which adopts a time-varying gain module G(t) = ln(t + 1)
achieved the best performance in terms of the convergence
as the red curves in Fig. 5 show. The red curves in Fig. 5a–c
finally converge without exception to a near-zero level from

whichwe can infer that the learned agents have accomplished
the specified tasks in the light of our reward design mech-
anism. On the other hand, when G(t) = 0 or G(t) = 2,
the learning curves fail to converge like the red curves do
in the same range of training episodes; therefore, it can be
seen that ourmethod has significantly improved convergence
performance and convergence speed which is a credit to the
introduction of the proposed inverse kinematics module and
gain module.

Second, we need to confirm whether the final determin-
istic policy model mentioned above can be used to generate
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a collision-free path that is a solution to the respective spec-
ified task. The collision-free path in configuration space
of the welding manipulator can be obtained indirectly by
way of sampling a trajectory s0, a0, s1, . . . , aT , sT using
the final policy model and then construct the solution

{
qi

}
,

i = 0, 1, . . . , T from {si } where s0 is equivalent to the
state when the welding manipulator is at the configuration
of qs . Consistent with the previous assumption, the policy
model trained by ourmethod described in Algorithm 3which
employs both the gain module G(t) = ln(t + 1) and inverse
kinematicmodule can generate a unique collision-free path in
the configuration space which fulfills respective task require-
ments. We render the path intuitively and succinctly in the
simulator CoppeliaSim as Fig. 6 shows.

In addition to collision avoidance, the path should ensure
that the end-effector of theweldingmanipulator is at its target
position p∗

e finally. Although all of the three models trained
by differentG(t) can generate a collision-free path for respec-
tive task, only the model trained by G(t) = ln(t + 1) is
able to move the end-effector to its target position. To intu-
itively reflect the performance of the models in the control
of end-effector’s position, we plot the distance between the
end-effector and its target Cartesian position vs the path steps
as Fig. 7 shows. It is clear that all of the red curves that
represent our method eventually drop to zero or near-zero
while other curves fail to drop as the red ones do, the second
half of these failed curves fluctuates around a number sig-
nificantly greater than zero, which shows that those learned
policy fails to convergence and is trapped in local optima.
On the other hand, as shown in Fig. 8, obviously, only our
proposed trainingmethod canmove the end-effector to its tar-
get position. However, the policy learned by other training
methods (e.g. G(t) = 2 or G(t) = 0) controls the manipu-
lator arm to gradually move toward the non-target direction
and the movement step is gradually reduced, which can also
indicate that these paths fall into the local optimum. The
above description indicates that only the policy trained by
our method can successfully complete all given tasks includ-
ing collision avoidance and moving the end-effector to its
target position.

Comparison with other methods

In this paper, we introduce an alternative collision-free path
planning algorithm for industry manipulators. As we all
know, for the path planning problem in high-dimensional
sampling space, e.g. the configuration space of industry
manipulators, the sampling-based method is one of the most
efficient algorithms. To demonstrate the progress of our algo-
rithm, the three experimental path planning tasks which have
been used to test our algorithm are now used to query several
staple sampling-based single-query path planning algorithm,
i.e. RRT-Connect [46], RRT [7], RRTStar [47], and BiTRRT

[48].Weutilize theopen-sourcemotionplanning library “The
Open Motion Planning Library”(OMPL) [49] to implement
the above planning algorithm on the three test tasks.

We select three performance indicators to evaluate the
performance of different algorithms from different dimen-
sions. The first performance indicator is the success rate for
a single-query path planning task in a specified number of
times and the other two indicators aim tomeasure path length
in configuration space and workspace, namely Cartesian
space. Generally speaking, the success rate of path planning
means the robustness of the algorithm while the length of the
planned path represents the optimality of the path. In Fig. 9,
we reveal our algorithm’s performance through comparison
with other algorithms.

First, since the path generated by the converged model is
deterministic and successful each time, the success rate of our
path planner based on the policy model is 100%. However,
in line with expectations, the success rate of sampling-
based planning algorithms is relatively low, and the highest
success rate is only just about 70% which is got by the
RRT-Connect algorithm. This is obviously not allowed in
industrial scenarios, so our algorithm has unique advantages
over those sampling-based planning algorithms. Second, as
we all know, from the perspective of path length, only optimal
RRT algorithms such as RRTStar [47] can find the optimal
or asymptotical optimal path, but they may require a huge
number of samples to achieve such optimality. our algorithm
achieves the same performance as BiTRRT does which is
better than any other algorithms, In other words, the path
generated by a well-trained policy using our method can
be comparable to an optimal sampling-based path planning
algorithm.

Conclusion and future work

In this research, we propose a hybrid algorithm of DDPG and
Inverse kinematics as an alternative global and single-query
path planning algorithm for industry welding manipulator.
Simulation results in high-fidelity virtual scenario show that
our improvements to the original algorithm DDPG have
greatly increased its convergence performance and conver-
gence speed and the well-trained policy model is able to
generate a collision-free path for a specified task. In indus-
try robot systems like automatic welding robot systems that
require extremely high stability and safety, our algorithm
may be competitive comparing with other sampling-based
algorithms because the sampling-based algorithm can not
guarantee 100% success rate of planning. Furthermore, our
algorithm can also produce path planning results comparable
to those of optimality or progressive optimality algorithms
in terms of path length. In summary, our algorithm provides
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an alternative solution for teaching-free automatic path plan-
ning of actual welding robots or other industrial robots.

Despite the progress of the proposed algorithm, we still
have lots of future work to do. We always remember that
the model-free deep reinforcement learning algorithm such
as DDPG in this paper is born with the characteristics of
low sample efficiency. Although we promote the sample effi-
ciency greatly in this research, we will still go on to develop
a more elegant method to accelerate the convergence of the
Deep-RL algorithm for path planning. On the other hand, we
also wish our algorithm can be applied to real-world robots
to complete sim-to-real tasks.
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