Nothing Special   »   [go: up one dir, main page]

Skip to main content

Parallel extrapolation methods and their application in chemical engineering

  • 2. Computational Science
  • Conference paper
  • First Online:
High-Performance Computing and Networking (HPCN-Europe 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1401))

Included in the following conference series:

Abstract

We study the parallelization of linearly-implicit extrapolation methods for the solution of large scale systems of differential algebraic equations arising in a method of lines (MOL) treatment of partial differential equations. In our approach we combine a slightly overlapping domain decomposition together with a polynomial block Neumann preconditioner. Through the explicit computation of the matrix products of the preconditioner and the system matrix a significant gain in overall efficiency is achieved for medium-sized problems. The parallel algorithm exhibits a good scalability up to 32 processors on a Cray T3E. Preliminary results for computations on a workstation cluster are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Arbenz, W. Gander: A Survey of Direct Parallel Algorithms for Banded Linear Systems. Technical Report TR 221, Inst. for Scientific Comp., ETH Zürich (1994).

    Google Scholar 

  2. K. Burrage: Parallel and Sequential Methods for Ordinary Differential Equations. Oxford University Press: New York (1996).

    Google Scholar 

  3. R.D. da Cunha, T. Hopkins: A parallel implementation of the restarted GMRES iterative algorithm for nonsymmetric systems of linear equations. Adv. Comp. Math. 2, pp. 261–277 (1994).

    Google Scholar 

  4. P. Deuflhard, U. Nowak: Extrapolation Integrators for Quasilinear Implicit ODE'S In: P. Deuflhard, B. Engquist (eds.): Large Scale Scientific Computing. Progress in Scientific Computing, Birkhaeuser 7, pp. 37–50 (1987).

    Google Scholar 

  5. P. Deuflhard, J. Lang, U. Nowak: Adaptive Algorithms in Dynamical Process Simulation. 8th Conference of the European Consortium for Mathematics in Industry, Kaiserslautern (1994).

    Google Scholar 

  6. P.F. Dubois, A. Greenbaum, G.H. Rodrigue: Approximating the inverse of a matrix for use in iterative algorithms on vector processors. Computing 22, pp. 257–268 (1979).

    Google Scholar 

  7. G. Eigenberger, U. Nieken: Katalytische Abluftreinigung: Verfahrenstechnische Aufgaben und neue Lösungen. Chem. Ing. Techn. 63(8), (1991).

    Google Scholar 

  8. E. Hairer, G. Wanner: Solving Ordinary Differential Equations II. — Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics 14, Springer Verlag, Berlin-Heidelberg (1991)

    Google Scholar 

  9. U. Nowak: A fully Adaptive MOL-Treatment of Parabolic 1D-Problems with Extrapolation Techniques. Appl. Num. Math. 20, pp. 129–145 (1996).

    Google Scholar 

  10. L.R. Petzold: A Description of DASSL: a differential-algebraic system solver. Proc. IMACS World Congress, Montreal, Canada (1982).

    Google Scholar 

  11. G. Radicati di Brozolo, Y. Robert: Parallel conjugate gradient-like algorithms for solving sparse nonsymmetric linear systems on a vector multiprocessor. Parallel Computing 11, pp, 223–239 (1989).

    Google Scholar 

  12. T. Rauber, G. Rünger: Load Balancing for Extrapolation Methods on Distributed Memory Multiprocessors. In: Lecture Notes in Computer Science 817, pp. 277–288, Athen, July 1994. PARLE 1994, Springer.

    Google Scholar 

  13. Y. Saad, M.H. Schultz: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comp. 7, pp. 856–869 (1986).

    Google Scholar 

  14. K. Schaber, J. Körber: Formation of Aerosols in Absorption Processes for Exhaust Gas Purification. J. Aerosol. Sci. 22, pp. 5501–5504 (1991).

    Google Scholar 

  15. H.A. van der Vorst: BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comp. 13, pp. 631–644 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter Sloot Marian Bubak Bob Hertzberger

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nowak, U., Ehrig, R., Oeverdieck, L. (1998). Parallel extrapolation methods and their application in chemical engineering. In: Sloot, P., Bubak, M., Hertzberger, B. (eds) High-Performance Computing and Networking. HPCN-Europe 1998. Lecture Notes in Computer Science, vol 1401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0037169

Download citation

  • DOI: https://doi.org/10.1007/BFb0037169

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64443-9

  • Online ISBN: 978-3-540-69783-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics