Nothing Special   »   [go: up one dir, main page]

Skip to main content

Hybrid fractal/wavelet image compression in a high performance computing environment

  • Conference paper
  • First Online:
High-Performance Computing and Networking (HPCN-Europe 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1225))

Included in the following conference series:

Abstract

We propose new hybrid fractal/wavelet image compression algorithms which combine both schemes in the spatial and the transform domain. Whereas traditional fractal compression algorithms suffer from enormous execution times, the proposed algorithms exhibit a smaller and more predictable computational comlexity. We propose strategies for executing these algorithms on MIMD high performance computers and achieve an excellent efficiency in the parallel execution. This approach reduces the time demand of a (at least partially) fractal based compression scheme to the time demand of a transform based scheme while maintaining advantages of fractal compression.

This work was partially supported by the Austrian Science Foundation FWF, project no. P11045-ÖMA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies. Image coding using wavelet transform. IEEE Transactions on Image Processing, 1(2):205–220, 1992.

    Google Scholar 

  2. A. Averbuch, D. Lazar, and M. Israeli. Image comression using wavelet transform and multiresolution decomposition. IEEE Trans. on Image Process., 5(1):4–15, 1996.

    Google Scholar 

  3. M.F. Barnsley and L.P. Hurd. Fractal Image Compression. AK Peters, Ltd, Wellesley, Massachusetts, 1993.

    Google Scholar 

  4. C.A. Cabrelli and U.M. Molter. Generalized self-similarity, wavelets and image an alysis. Preprint 78, Department of Math., University of Buenos Aires, 1994.

    Google Scholar 

  5. C. Chakrabarti and M. Vishvanath. Efficient realizations of the discrete and continous wavelet transforms: From single chip implementations to mappings on SIMD array computers. IEEE Transactions on Signal Processing, 3(43):759–771, 1995.

    Google Scholar 

  6. B. Cheng and X. Zhu. A multiresolution approximation theory of fractal transform. In Proceedings of the NATO ASI on Fractal Image Encoding and Analysis, Trondheim, Norway, July 1995.

    Google Scholar 

  7. R.R. Coifman and M.V. Wickerhauser. Entropy based methods for best basis selection. IEEE Transactions on Information Theory, 38(2):719–746, 1992.

    Google Scholar 

  8. I. Daubechies. Orthonormal bases of compactly supported wavelets. Comm. Pure and Appl. Math., 41:909–996, 1988.

    Google Scholar 

  9. Y. Fisher, editor. Fractal Image Compression: Theory and Application. Springer-Verlag, New York, 1995.

    Google Scholar 

  10. E. Goirand, M.V. Wickerhauser, and M. Farge. A parallel two-dimensional wavelet packet transform and some applications in computing and compression analysis. In R. Motard and B. Joseph, editors, Applications of Wavelet Transforms in Chemical Engineering, pages 275–319. Kluwer Academic Publishers Group, 1995.

    Google Scholar 

  11. J. Hämmerle. Combining sequential speed-up techniques and parallel computing for fractal image compression. In R. Trobec, M. Vajtersic, P. Zinterhof, J. Slic, and B. Robic, editors, Proceedings of the International Workshop on Parallel Numerics (Parnum'96), pages 220–233, 1996.

    Google Scholar 

  12. J. Hämmerle and A. Uhl. Parallel algorithms for fractal image coding on MIMD architectures. In Proceedings of The First International Conference on Visual Information Systems 1996 (Visual'96), pages 182–191, Melbourne, February 1996.

    Google Scholar 

  13. M.L. Hilton, B.D. Jawerth, and A. Sengupta. Compressing still and moving images with wavelets. Multimedia Systems, 3(2), 1995.

    Google Scholar 

  14. M. Holström. Parallelizing the fast wavelet transform. Parallel Computing, 21(11):1837–1848, 1995.

    Google Scholar 

  15. D.J. Jackson and G.S. Tinney. Performance analysis of distributed implementations of a fractal image compression algorithm. Concurrency: Practice and Experience, 8(5):357–380, June 1996.

    Google Scholar 

  16. A.E. Jacquin. Fractal image coding: A review. Proceedings of the IEEE, 81(10):1451–1465, October 1993.

    Google Scholar 

  17. K. Ramchandran and M. Vetterli. Best wavelet packet bases in a rate-distortion sense. IEEE Trans. on Image Process., 2(2):160–175, 1993.

    Google Scholar 

  18. D. Saupe and R. Hamzaoui. Complexity reduction methods for fractal image compression. In J. M. Blackledge, editor, Proc. IMA Conf. on Image Processing; Mathematical Methods and Applications, September 1994. to appear with Oxford University Press, 1996.

    Google Scholar 

  19. K. Shen, G.W. Cook, L.H. Jamieson, and E.J. Delp. An overview of parallel processing approaches to image and video compression. In M. Rabbani, editor, Image and Video Compression, volume Proc. SPIE 2186, pages 197–208, 1994.

    Google Scholar 

  20. S. Sullivan. Vector and parallel implementations of the wavelet transform. Technical report, Center for Supercomputing Research and Development, University of Illinois, Urbana, 1991.

    Google Scholar 

  21. A. Uhl. Adapted wavelet analysis an moderate parallel distributed memory MIMD architectures. In A. Ferreira and J. Rolim, editors, Parallel Algorithms for Irregulary Structured Problems, volume 980 of Lecture Notes in Computer Science, pages 275–284. Springer, 1995.

    Google Scholar 

  22. A. Uhl. Wavelet packet best basis selection on moderate parallel MIMD architectures. Parallel Computing, 22(1):149–158, 1996.

    Google Scholar 

  23. A. Uhl and J. Hämmerle. Image compression on a workstationcluster using PVM. In A. Bode, J. Dongarra, and V. Sunderam, editors, Parallel Virtual Machine — EuroPVM'96, volume 1156 of Lecture Notes on Computer Science, pages 301–304. Springer, 1996.

    Google Scholar 

  24. G.D. Veccia, R. Distasi, M. Nappi, and M. Pepe. Fractal image compresson on a MIMD architecture. In H. Liddel, A. Colbrook, B. Hertzberger, and P. Sloot, editors, High Performance Computing and Networking. Proceedings of HPCN Europe 1996, volume 1067 of Lecture Notes on Computer Science, pages 961–963. Springer, 1996.

    Google Scholar 

  25. J.D. Villasenor, B. Beizer, and J. Liao. Filter evaluation and selection in wavelet image compression. In J.A. Storer and M.A. Cohn, editors, Proceedings Data Compression Conference DCC'94, Snowbird Utah, pages 351–360. IEEE Computer Society, 1994.

    Google Scholar 

  26. M. Xue, T. Hanson, and A. Merigot. A massively parallel implementation of fractal image compression. In A. Bovik, editor, Proceedings of the first IEEE international conference on image processing, pages II/640–II/644. IEEE Press, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bob Hertzberger Peter Sloot

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bruckmann, A., Hämmerle, J., Reichl, M., Uhl, A. (1997). Hybrid fractal/wavelet image compression in a high performance computing environment. In: Hertzberger, B., Sloot, P. (eds) High-Performance Computing and Networking. HPCN-Europe 1997. Lecture Notes in Computer Science, vol 1225. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0031585

Download citation

  • DOI: https://doi.org/10.1007/BFb0031585

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62898-9

  • Online ISBN: 978-3-540-69041-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics