Nothing Special   »   [go: up one dir, main page]

Skip to main content

Moving an angle around a region

  • Conference paper
  • First Online:
Algorithm Theory — SWAT'98 (SWAT 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1432))

Included in the following conference series:

Abstract

Let D be a connected region inside a simple polygon, P. We define the angle hull, \(\mathcal{A}\mathcal{H}\)(D), of D to be the set of all points in P that can see two points of D at a right angle. We show that the perimeter of \(\mathcal{A}\mathcal{H}\)(D) cannot exceed the perimeter of the relative convex hull of D by more than a factor of 2. A special case occurs when P equals the full plane. Here we prove a bound of π/2. Both bounds are tight, and corresponding results are obtained for any other angle.

This work was supported by the Deutsche Forschungsgemeinschaft, grant Kl 655/8-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Carlsson and H. Jonsson. Computing a shortest watchman path in a simple polygon in polynomial-time. In Proc. 4th Workshop Algorithms Data Struct., volume 955 of Lecture Notes Comput. Sci., pages 122–134. Springer-Verlag, 1995.

    Google Scholar 

  2. S. Carlsson, H. Jonsson, and B. J. Nilsson. Finding the shortest watchman route in a simple polygon. In Proc. 4th Annu. Internat. Sympos. Algorithms Comput., volume 762 of Lecture Notes Comput. Sci., pages 58–67. Springer-Verlag, 1993.

    Google Scholar 

  3. W.-P. Chin and S. Ntafos. Watchman routes in simple polygons. Discrete Comput. Geom., 6(1):9–31, 1991.

    MathSciNet  Google Scholar 

  4. X. Deng, T. Kameda, and C. Papadimitriou. How to learn an unknown environment. In Proc. 32nd Annu. IEEE Sympos. Found. Comput. Sci., pages 298–303, 1991.

    Google Scholar 

  5. X. Deng, T. Kameda, and C. H. Papadimitriou. How to learn an unknown environment I: the rectilinear case. Technical Report CS-93-04, Department of Computer Science, York University, Canada, 1993.

    Google Scholar 

  6. F. Hoffmann, C. Icking, R. Klein, and K. Kriegel. A competitive strategy for learning a polygon. In Proc. 8th ACM-SIAM Sympos. Discrete Algorithms, pages 166–174, 1997.

    Google Scholar 

  7. F. Hoffmann, C. Icking, R. Klein, and K. Kriegel. The polygon exploration problem: A new strategy and a new analysis technique. In Proc. 3rd International Workshop on Algorithmic Foundations of Robotics, 1998.

    Google Scholar 

  8. C. Icking and R. Klein. Searching for the kernel of a polygon: A competitive strategy. In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages 258–266, 1995.

    Google Scholar 

  9. C. Icking, R. Klein, and L. Ma. How to look around a corner. In Proc. 5th Canad. Conf. Comput. Geom., pages 443–448, 1993.

    Google Scholar 

  10. R. Seidel. Personal communication, 1997.

    Google Scholar 

  11. X. Tan and T. Hirata. Constructing shortest watchman routes by divide-and-conquer. In Proc. 4th Annu. Internat. Sympos. Algorithms Comput., volume 762 of Lecture Notes Comput. Sci., pages 68–77. Springer-Verlag, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stefan Arnborg Lars Ivansson

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoffmann, F., Icking, C., Klein, R., Kriegel, K. (1998). Moving an angle around a region. In: Arnborg, S., Ivansson, L. (eds) Algorithm Theory — SWAT'98. SWAT 1998. Lecture Notes in Computer Science, vol 1432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0054356

Download citation

  • DOI: https://doi.org/10.1007/BFb0054356

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64682-2

  • Online ISBN: 978-3-540-69106-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics