Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Node Influence Based Memetic Algorithm for Community Detection in Complex Networks

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1565))

Abstract

Community structure is a significant property when analyzing the features and functions of complex systems. Heuristic algorithm-based community detection treats finding the community structure as an optimization problem, which has received great attentions in a variety of fields these years. Several community detection methods have been proposed. To make an approach of detecting the community structure in a more efficient way, a node influence based memetic algorithm (NIMA), considering node influence, is proposed in this paper. The NIMA consists of three main parts. First of all, a transition probability matrix-based initialization is employed to accelerate the convergence speed and provide an initial population with great diversity. Secondly, a network-specific crossover and a node degree-based mutation are designed to enlarge the search space and keep effective information. Last, a multi-level greedy search is deployed to find the potential optimal solutions quickly and effectively. Extensive experiments on 28 synthetic and 6 real-world networks demonstrate that compared with 11 existing algorithms, the proposed NIMA has effective performance on detecting communities in complex networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Latora, V., Nicosia, V., Russo, G.: Complex Networks: Principles, Methods and Applications, 1st ed. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/9781316216002

  2. Watts, D.J.: A twenty-first century science. Nature 445(7127), 489 (2007)

    Article  Google Scholar 

  3. Lazer, D., et al.: Life in the network: the coming age of computational social science. Science 323(5915), 721–723 (2009)

    Article  Google Scholar 

  4. Suweis, S., Simini, F., Banavar, J.R., Maritan, A.: Emergence of structural and dynamical properties of ecological mutualistic networks. Nature 500(7463), 449–452 (2013)

    Article  Google Scholar 

  5. Chakraborty, T., Ghosh, S., Park, N.: Ensemble-based overlapping community detection using disjoint community structures. Knowl.-Based. Syst 163, 241–251 (2019). https://doi.org/10.1016/j.knosys.2018.08.033

    Article  Google Scholar 

  6. Yang, L., Cao, X., He, D., Wang, C., Zhang, W.: Modularity based community detection with deep learning. In: Proceedings of International Joint Conference on Artificial Intelligence, pp. 2252–2258 (2016). https://doi.org/10.5555/3060832.3060936

  7. You, X., Ma, Y., Liu, Z.: A three-stage algorithm on community detection in social networks. Knowl.-Based Syst. 187, 104822 (2020). https://doi.org/10.1016/j.knosys.2019.06.030

    Article  Google Scholar 

  8. Zhang, J., Ding, X., Yang, J.: Revealing the role of node similarity and community merging in community detection. Knowl.-Based Syst. 165, 407–419 (2019). https://doi.org/10.1016/j.knosys.2018.12.009

    Article  Google Scholar 

  9. Lu, M., Zhang, Z., Qu, Z., Kang, Y.: LPANNI: overlapping community detection using label propagation in large-scale complex networks. IEEE Trans. Knowl. Data Eng. 31(9), 1736–1749 (2019). https://doi.org/10.1109/TKDE.2018.2866424

    Article  Google Scholar 

  10. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  11. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004). https://link.aps.org/doi/10.1103/PhysRevE.69.026113

  12. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004). https://doi.org/10.1103/PhysRevE.69.066133

    Article  Google Scholar 

  13. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. U.S.A. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  14. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006). https://link.aps.org/doi/10.1103/PhysRevE.74.036104

  15. Lancichinetti, A., Fortunato, S.: Limits of modularity maximization in community detection. Phys. Rev. E 84, 066122 (2011)

    Article  Google Scholar 

  16. Zhan, Z., Shi, L., Tan, K., Zhang, J.: A survey on evolutionary computation for complex continuous optimization. Artificial Intell. Rev. 55, 59–110 (2021). https://doi.org/10.1007/s10462-021-10042-y

    Article  Google Scholar 

  17. Bian, K., Sun, Y., Cheng, S., Liu, Z., Sun, X.: Adaptive methods of differential evolution multi-objective optimization algorithm based on decomposition. In: Zhang, H., Yang, Z., Zhang, Z., Wu, Z., Hao, T. (eds.) NCAA 2021. CCIS, vol. 1449, pp. 458–472. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-5188-5_33

    Chapter  Google Scholar 

  18. Gong, M., Cai, Q., Chen, X., Ma, L.: Complex network clustering by multiobjective discrete particle swarm optimization based on decomposition. IEEE Trans. Evol. Comput. 18(1), 82–97 (2014). https://doi.org/10.1109/TEVC.2013.2260862

    Article  Google Scholar 

  19. Li, C., Chen, H., Li, T., et al.: A stable community detection approach for complex network based on density peak clustering and label propagation. Appl Intell. 52, 1188–1208 (2021). https://doi.org/10.1007/s10489-021-02287-5

    Article  Google Scholar 

  20. Ma, L., Gong, M., Liu, J., Cai, Q., Jiao, L.: Multi-level learning based memetic algorithm for community detection. Appl. Soft Comput. 19, 121–133 (2014). https://doi.org/10.1016/j.asoc.2014.02.003

    Article  Google Scholar 

  21. Chen, D., Liu, C., Huang, X., Wang, D., Yan, J.: A probability transition matrix-based recommendation algorithm for bipartite networks. In: Liu, Y., Wang, L., Zhao, L., Yu, Z. (eds.) ICNC-FSKD 2019. AISC, vol. 1074, pp. 921–929. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32456-8_99

    Chapter  Google Scholar 

  22. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory and Experiment (10), P10008 (2008)

    Google Scholar 

  23. Coello, C., Pulido, G., Lechuga, M.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)

    Article  Google Scholar 

  24. Pizzuti, C.: A multiobjective genetic algorithm to find communities in complex networks. IEEE Trans. Evol. Comput. 16(3), 418–430 (2012)

    Article  Google Scholar 

  25. Gong, M., Ma, L., Zhang, Q., Jiao, L.: Community detection in networks by using multiobjective evolutionary algorithm with decomposition. Phys. A 391(15), 4050–4060 (2012)

    Article  Google Scholar 

  26. Shi, C., Yan, Z., Cai, Y., Wu, B.: Multi-objective community detection in complex networks. Appl. Soft Comput. 12(2), 850–859 (2012)

    Article  Google Scholar 

  27. Gong, M., Fu, B., Jiao, L., Du, H.: Memetic algorithm for community detection in networks. Phys. Rev. E 84(5), 056101 (2011)

    Article  Google Scholar 

  28. Pizzuti, C.: GA-Net: A genetic algorithm for community detection in social networks. Proc. Parallel Problem Solving Nat. 5199, 1081–1090 (2008)

    Google Scholar 

  29. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. U.S.A. 99(12), 7821–7826 (2002)

    Article  MathSciNet  Google Scholar 

  30. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066111 (2004)

    Article  Google Scholar 

  31. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. USA 105(4), 1118–1123 (2008)

    Article  Google Scholar 

  32. Fortunato, S., Lancichinetti, A.: Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E 80(1), 016118 (2009)

    Article  Google Scholar 

  33. Zachary, W.W.: An information-flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1997)

    Article  Google Scholar 

  34. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)

    Article  Google Scholar 

  35. Gleiser, P., Danon, L.: Community structure in jazz. Adv. Complex Syst. 6(4), 565 (2003)

    Article  Google Scholar 

  36. Guimerà, R., Danon, L., Díaz-Guilera, A.: Self-similar community structure in a network of human interactions. Phys. Rev. E 68(6), 065103 (2003)

    Google Scholar 

  37. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61703256, 61806119), Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2017JQ6070), the Fundamental Research Funds for the Central Universities (Program No. GK201803020) and the Graduate Innovation Team Project of Shaanxi Normal University (Grant No. TD2020014Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifei Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z., Sun, Y., Cheng, S., Sun, X., Bian, K., Yao, R. (2022). A Node Influence Based Memetic Algorithm for Community Detection in Complex Networks. In: Pan, L., Cui, Z., Cai, J., Li, L. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2021. Communications in Computer and Information Science, vol 1565. Springer, Singapore. https://doi.org/10.1007/978-981-19-1256-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1256-6_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1255-9

  • Online ISBN: 978-981-19-1256-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics