Nothing Special   »   [go: up one dir, main page]

Skip to main content

Textile Waste: The Genesis, Environmental Impact and Remediation Using Nanomaterials

  • Chapter
  • First Online:
Nano-engineered Materials for Textile Waste Remediation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pensupa N, Leu SY, Hu Y, Du C, Liu H, Jing H, Wang H, Lin CSK (2017) Recent trends in sustainable textile waste recycling methods: current situation and future prospects. Top Curr Chem 3755(375):1–40. https://doi.org/10.1007/S41061-017-0165-0

  2. Niinimäki K, Peters G, Dahlbo H, Perry P, Rissanen T, Gwilt A (2020) The environmental price of fast fashion. Nat Rev Earth Environ 14(1):189–200. https://doi.org/10.1038/s43017-020-0039-9

  3. The global environmental injustice of fast fashion | SpringerLink (n.d.). https://link.springer.com/article/10.1186/s12940-018-0433-7. Accessed 21 May 2022

  4. A summary of the world apparel fiber consumption survey food and agriculture organization of the united nations and international cotton advisory committee (2005)

    Google Scholar 

  5. Bartl A (2011) Textile waste. Waste 167–179. https://doi.org/10.1016/B978-0-12-381475-3.10012-9

  6. Hu Y, Du C, Pensupa N, Lin CSK (2018) Optimisation of fungal cellulase production from textile waste using experimental design. Process Saf Environ Prot 118:133–142. https://doi.org/10.1016/j.psep.2018.06.009

    Article  Google Scholar 

  7. Chemical and textile fibers production worldwide 2020 | Statista (n.d.). https://www.statista.com/statistics/263154/worldwide-production-volume-of-textile-fibers-since-1975/. Accessed 21 May 2022

  8. Van Tot B (n.d.) Textile & apparel industry report apparel industry content. www.fpts.com.vn. Accessed 21 May 2022

  9. Pan J, Chu C, Zhao X, Cui Y, Voituriez T (2008) © 2008 international institute for sustainable development (IISD) Published by the International Institute for Sustainable Development The International Institute for Sustainable Development contributes to sustainable development by advancing policy recommendations on international trade and investment. http://www.iisd.org/. Accessed 21 May 2022

  10. A Brief History of Natural Fibers - LancasterHistory (n.d.). https://www.lancasterhistory.org/brief-history-of-natural-fibers/. Accessed 22 May 2022

  11. Prehistoric Textiles | LoveToKnow (n.d.). https://fashion-history.lovetoknow.com/fashion-history-eras/prehistoric-textiles. Accessed 22 May 2022

  12. Schutz HG, Cardello AV, Winterhalter C (2016) Perceptions of fiber and fabric uses and the factors contributing to military clothing comfort and satisfaction 75:223–232. https://doi.org/10.1177/004051750507500307

  13. Nordås HK (n.d.) The global textile and clothing industry post the agreement on textiles and clothing

    Google Scholar 

  14. Jegatheesan V, Pramanik BK, Chen J, Navaratna D, Chang CY, Shu L (2016) Treatment of textile wastewater with membrane bioreactor: a critical review. Bioresour Technol 204:202–212. https://doi.org/10.1016/J.BIORTECH.2016.01.006

    Article  Google Scholar 

  15. Vigneswaran C, Ananthasubramanian M, Kandhavadivu P (2014) Bioprocessing of organic cotton textiles. Bioprocess Text 319–397. https://doi.org/10.1016/B978-93-80308-42-5.50007-X

  16. Chequer FMD, de Oliveira GAR, Ferraz ERA, Cardoso JC, Zanoni MVB, de Oliveira DP (2013) Textile dyes: dyeing process and environmental impact. Eco-Friendly Text Dye Finish. https://doi.org/10.5772/53659

    Article  Google Scholar 

  17. Ben Slama H, Bouket AC, Pourhassan Z, Alenezi FN, Silini A, Cherif-Silini H, Oszako T, Luptakova L, Golińska P, Belbahri L (2021) Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods. Appl Sci 11:6255. https://doi.org/10.3390/APP11146255

  18. Ardila-Leal LD, Poutou-Piñales RA, Pedroza-Rodríguez AM, Quevedo-Hidalgo BE, Capela I, Kamali M, Zuorro A (2021) A brief history of colour, the environmental impact of synthetic dyes and removal by using laccases. Molecules 26:3813. https://doi.org/10.3390/MOLECULES26133813

  19. Ogugbue CJ, Sawidis T (2011) Bioremediation and detoxification of synthetic wastewater containing triarylmethane dyes by aeromonas hydrophila isolated from industrial effluent. Biotechnol Res Int 1–11. https://doi.org/10.4061/2011/967925

  20. Islam MR, Mostafa MG (2018) Textile dyeing effluents and environment concerns—A review. J Environ Sci Nat Resour 11:131–144. https://doi.org/10.3329/JESNR.V11I1-2.43380

    Article  Google Scholar 

  21. Kharisma A, Murphiyanto RD, Perdana MK, Kasih TP (2017) Application of Taguchi method and ANOVA in the optimization of dyeing process on cotton knit fabric to reduce re-dyeing process. In: IOP conference series: earth and environmental science, vol 109, p 012023. https://doi.org/10.1088/1755-1315/109/1/012023

  22. Athanasekou CP, Moustakas NG, Morales-Torres S, Pastrana-Martínez LM, Figueiredo JL, Faria JL, Silva AMT, Dona-Rodriguez JM, Romanos GE, Falaras P (2015) Ceramic photocatalytic membranes for water filtration under UV and visible light. Appl Catal B Environ 178:12–19. https://doi.org/10.1016/J.APCATB.2014.11.021

    Article  Google Scholar 

  23. Ma D, Yi H, Lai C, Liu X, Huo X, An Z, Li L, Fu Y, Li B, Zhang M, Qin L, Liu S, Yang L (2021) Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere 275:130104. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130104

    Article  ADS  Google Scholar 

  24. Kan CW, Lam YL (2013) Low stress mechanical properties of plasma-treated cotton fabric subjected to zinc oxide-anti-microbial treatment. Materials 6:314–333. https://doi.org/10.3390/MA6010314

  25. Kamel MY, Hassabo AG (2021) Anti-microbial finishing for natural textile fabrics. J Text Color Polym Sci 18:83–95. https://doi.org/10.21608/JTCPS.2021.72333.1054

  26. Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf B Biointerfaces 79:5–18. https://doi.org/10.1016/J.COLSURFB.2010.03.029

    Article  Google Scholar 

  27. Stanescu MD (2021) State of the art of post-consumer textile waste upcycling to reach the zero waste milestone. Environ Sci Pollut Res 28(12):14253–14270. https://doi.org/10.1007/S11356-021-12416-9

  28. Li X, Wang L, Ding X (2021) Textile supply chain waste management in China. J Clean Prod 289:125147. https://doi.org/10.1016/J.JCLEPRO.2020.125147

    Article  Google Scholar 

  29. Hayes S, McLoughlin JJ, Fairclough D, Cooklin G (2021) Cooklin’s garment technology for fashion designers 200

    Google Scholar 

  30. White paper: Digitally enhanced circular economy within global fashion supply chains – Reverse Resources (n.d.). https://reverseresources.net/news/white-paper-by-rr. Accessed 22 May 2022

  31. Niinimäki K (n.d.) Sustainable fashion in a circular economy

    Google Scholar 

  32. One third of all clothing “never sold” | Fashion & Retail News | News (n.d.). https://www.ecotextile.com/2016042122078/fashion-retail-news/one-third-of-all-clothing-never-sold.html. Accessed 22 May 2022

  33. H&M, a Fashion Giant, Has a Problem: $4.3 Billion in Unsold Clothes - The New York Times (n.d.). https://www.nytimes.com/2018/03/27/business/hm-clothes-stock-sales.html. Accessed 22 May 2022

  34. Swedish power plant ditches coal to burn H&M clothes instead | The Independent | The Independent (n.d.). https://www.independent.co.uk/news/business/news/sweden-power-plant-h-m-coal-burn-vasteras-stockholm-oil-discarded-products-a8073346.html. Accessed 22 May 2022

  35. H&M accused of burning 12 tonnes of new, unsold clothing per year (n.d.). https://fashionunited.uk/news/fashion/h-m-accused-of-burning-12-tonnes-of-new-unsold-clothing-per-year/2017101726341. Accessed 22 May 2022

  36. E. Audit Committee, Fixing fashion: clothing consumption and sustainability Sixteenth Report of Session 2017–19 FIXING FASHION: clothing consumption and sustainability (2019)

    Google Scholar 

  37. Valuing our clothes: The cost of UK fashion | WRAP (n.d.). https://wrap.org.uk/resources/report/valuing-our-clothes-cost-uk-fashion. Accessed 22 May 2022

  38. International Carbon Flows Clothing 1 | Clothing International Carbon Flows Clothing (n.d.)

    Google Scholar 

  39. Style that’s sustainable: a new fast-fashion formula | McKinsey (n.d.). https://www.mckinsey.com/business-functions/sustainability/our-insights/style-thats-sustainable-a-new-fast-fashion-formula. Accessed 22 May 2022

  40. Kirchain R, Olivetti E, Miller R, Greene S (2015). Sustain Appar Mater. https://doi.org/10.3390/resources3010319

    Article  Google Scholar 

  41. Quantifying Apparel Consumer Use Behavior in Six Countries: Addressing a Data Need in Life Cycle Assessment Modeling | Daystar | J Text Appar Technol Manag (n.d.). https://ojs.cnr.ncsu.edu/index.php/JTATM/article/view/14770. Accessed 22 May 2022

  42. Nørup N, Pihl K, Damgaard A, Scheutz C (2019) Quantity and quality of clothing and household textiles in the Danish household waste. Waste Manag 87:454–463. https://doi.org/10.1016/J.WASMAN.2019.02.020

    Article  Google Scholar 

  43. Allwood JM, Laursen SE, De Rodríguez CM, Bocken NM (2006) Well dressed? The present and future sustainability of clothing and textiles in the United Kingdom. Technical annex

    Google Scholar 

  44. ecoinvent – ecoinvent (n.d.). https://ecoinvent.org/. Accessed 22 May 2022

  45. Carbone C, Hill C, Meyer C, Morales L, Jarvis S, Bianchi F, Toftegaard N (2016) Textiles: from waste to resources in denmark an interactive qualifying project final report. http://www.wpi.edu/academics/ugradstudies/project-learning.html. Accessed 22 May 2022

  46. A New Textiles Economy: Redesigning fashion’s future (n.d.). https://ellenmacarthurfoundation.org/a-new-textiles-economy. Accessed 22 May 2022

  47. Environmental indicator report 2018 - In support to the monitoring of the 7th Environment Action Programme—European Environment Agency (n.d.). https://www.eea.europa.eu//publications/environmental-indicator-report-2018. Accessed 22 May 2022

  48. Chequer FMD, de Oliveira GAR, Ferraz ERA, Carvalho J, Zanoni MVB, de Oliveir DP (2013) Textile dyes: dyeing process and environmental impact. Eco-Friendly Text Dye Finish. https://doi.org/10.5772/53659

  49. Srivastava A, Bandhu S (2022) Biotechnological advancements and challenges in textile effluents management for a sustainable bioeconomy: Indian case studies. Case Stud Chem Environ Eng 5. https://doi.org/10.1016/j.cscee.2022.100186

  50. Wang ZG, Lv N, Bi WZ, Zhang JL, Ni JZ (2015) Development of the affinity materials for phosphorylated proteins/peptides enrichment in phosphoproteomics analysis. ACS Appl Mater Interfaces 7:8377–8392. https://doi.org/10.1021/acsami.5b01254

    Article  Google Scholar 

  51. Rattee ID (1972) The chemistry of dyeing. Chem Soc Rev 1:145–162. https://doi.org/10.1039/CS9720100145

    Article  Google Scholar 

  52. Nair GP (2011) Methods and machinery for the dyeing process. Handb Text Ind Dye Princ Process Types Dye 1:245–300. https://doi.org/10.1533/9780857093974.1.245

  53. Periyasamy AP, Militky J (2020) Sustainability in textile dyeing: recent developments 37–79. https://doi.org/10.1007/978-3-030-38545-3_2

  54. Gita S, Shukla SP, Saharan N, Prakash C, Deshmukhe G (2019) Toxic effects of selected textile dyes on elemental composition, photosynthetic pigments, protein content and growth of a freshwater chlorophycean alga chlorella vulgaris. Bull Environ Contam Toxicol 102:795–801. https://doi.org/10.1007/S00128-019-02599-W/TABLES/1

    Article  Google Scholar 

  55. Singh K, Arora S, Singh K, Arora S (2011) Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies 41:807–878. https://doi.org/10.1080/10643380903218376

  56. Sadeghi-Kiakhani M, Tehrani-Bagha AR, Safapour S (2018) Enhanced anti-microbial, anti-creasing and dye absorption properties of cotton fabric treated with Chitosan-Cyanuric Chloride hybrid. Cellulose 25:883–893. https://doi.org/10.1007/S10570-017-1591-4/TABLES/4

    Article  Google Scholar 

  57. Khan R, Patel V, Khanu Z (2020) Bioremediation of dyes from textile and dye manufacturing industry effluent. Abat Environ Pollut Trends Strateg 107–125. https://doi.org/10.1016/B978-0-12-818095-2.00005-9

  58. Rather LJ, Jameel S, Dar OA, Ganie SA, Bhat KA, Mohammad F (2019) Advances in the sustainable technologies for water conservation in textile industries. Water Text Fash 175–194. https://doi.org/10.1016/B978-0-08-102633-5.00010-5

  59. Wijetunga S, Li XF, Jian C (2010) Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor. J Hazard Mater 177:792–798. https://doi.org/10.1016/J.JHAZMAT.2009.12.103

    Article  Google Scholar 

  60. Ward FA, Pulido-Velazquez M (2008) Water conservation in irrigation can increase water use. Proc Natl Acad Sci U S A 105:18215–18220. https://doi.org/10.1073/PNAS.0805554105

    Article  ADS  Google Scholar 

  61. Mohsin M, Sardar S, Hassan M, Akhtar N, Hassan A, Sufyan M (2020) Novel, sustainable and water efficient nano bubble dyeing of cotton fabric. Cellulose 27:6055–6064. https://doi.org/10.1007/S10570-020-03187-6

    Article  Google Scholar 

  62. Junnarkar N, Murty DS, Bhatt NS, Madamwar D (2006) Decolorization of diazo dye Direct Red 81 by a novel bacterial consortium. World J Microbiol Biotechnol 22:163–168. https://doi.org/10.1007/S11274-005-9014-3

    Article  Google Scholar 

  63. Kapoor RT, Danish M, Singh RS, Rafatullah M, Abdul AK (2021) Exploiting microbial biomass in treating azo dyes contaminated wastewater: Mechanism of degradation and factors affecting microbial efficiency. J Water Process Eng 43:102255. https://doi.org/10.1016/J.JWPE.2021.102255

    Article  Google Scholar 

  64. Gou M, Qu Y, Zhou J, Ma F, Tan L (2009) Azo dye decolorization by a new fungal isolate, Penicillium sp. QQ and fungal-bacterial cocultures. J Hazard Mater 170:314–319. https://doi.org/10.1016/J.JHAZMAT.2009.04.094

  65. Oliveira DP, Carneiro PA, Rech CM, Zanoni MVB, Claxton LD, Umbuzeiro GA (2006) Mutagenic compounds generated from the chlorination of disperse azo-dyes and their presence in drinking water. Environ Sci Technol 40:6682–6689. https://doi.org/10.1021/ES061020P/SUPPL_FILE/ES061020PSI20060824_014710.PDF

    Article  ADS  Google Scholar 

  66. Roubicek DA, Rech CM, Umbuzeiro GA (2020) Mutagenicity as a parameter in surface water monitoring programs—Opportunity for water quality improvement. Environ Mol Mutagen 61:200–211. https://doi.org/10.1002/EM.22316

    Article  Google Scholar 

  67. Han J, Yang D, Hall DR, Liu J, Sun J, Gu W, Tang S, Alharbi HA, Jones PD, Krause HM, Peng H (2020) Toxicokinetics of Brominated Azo Dyes in the Early Life Stages of Zebrafish (Danio rerio) is prone to aromatic substituent changes. Environ Sci Technol 54:4421–4431. https://doi.org/10.1021/ACS.EST.9B07178

    Article  ADS  Google Scholar 

  68. Carneiro PA, Umbuzeiro GA, Oliveira DP, Zanoni MVB (2010) Assessment of water contamination caused by a mutagenic textile effluent/dyehouse effluent bearing disperse dyes. J Hazard Mater 174:694–699. https://doi.org/10.1016/J.JHAZMAT.2009.09.106

    Article  Google Scholar 

  69. Ohnishi S, Murata M, Degawa M, Kawanishi S (2001) Oxidative DNA damage induced by an N-Hydroxy metabolite of carcinogenic 4-dimethylaminoazobenzene, Japanese. J Cancer Res 92:23–29. https://doi.org/10.1111/J.1349-7006.2001.TB01043.X

    Article  Google Scholar 

  70. Ohnishi S, Murata M, Kawanishi S (2002) Oxidative DNA damage induced by a metabolite of 2-naphthylamine, a smoking-related bladder carcinogen, Japanese. J Cancer Res 93:736–743. https://doi.org/10.1111/J.1349-7006.2002.TB01314.X

    Article  Google Scholar 

  71. Mahmood Q, Masood F, Bhatti ZA, Siddique M, Bilal M, Yaqoob H, Farooq R, Ullah Z (2014) Biological treatment of the dye reactive blue 19 by cattails and anaerobic bacterial consortia96:530–541. https://doi.org/10.1080/02772248.2014.970556

  72. Vasconcelos VM, Ponce-de-León C, Rosiwal SM, Lanza MRV (2019) Electrochemical degradation of reactive blue 19 dye by combining boron-doped diamond and reticulated vitreous carbon electrodes. ChemElectroChem 6:3516–3524. https://doi.org/10.1002/CELC.201900563

    Article  Google Scholar 

  73. Chen Y, Xiang H, Zhuang S, Shen Y, Chen Y, Zhang J (2021) Oxygen-independent photocleavage of radical nanogenerator for near-IR-gated and H2O-mediated free-radical nanotherapy. Adv Mater 33. https://doi.org/10.1002/ADMA.202100129

  74. Carneiro PA, Oliveira DP, Umbuzeiro GA, Zanoni MVB (2010) Mutagenic activity removal of selected disperse dye by photoeletrocatalytic treatment. J Appl Electrochem 40:485–492. https://doi.org/10.1007/S10800-009-0018-9

    Article  Google Scholar 

  75. Ru J, Qian X, Wang Y (2018) Low-salt or salt-free dyeing of cotton fibers with reactive dyes using liposomes as dyeing/level-dyeing promotors. Sci Rep 81(8):1–9. https://doi.org/10.1038/s41598-018-31501-7

  76. Dadras FS, Gharanjig K, Raissi S (2014) Optimising by response surface methodology the dyeing of polyester with a liposome-encapsulated disperse dye. Color Technol 130:86–92. https://doi.org/10.1111/COTE.12073

  77. McMullan G, Meehan C, Conneely A, Kirby N, Robinson T, Nigam P, Banat IM, Marchant R, Smyth WF (2001) Microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotechnol 561(56):81–87. https://doi.org/10.1007/S002530000587

  78. Pereira L, Alves M (2012) Dyes—Environmental impact and remediation BT—Environmental protection strategies for sustainable development. Environ Prot Strateg Sustain Dev 111–162. https://doi.org/10.1007/978-94-007-1591-2_4

  79. O’neill C, Hawkes FR, Hawkes DL, Lourenço ND, Pinheiro HM, Delée W (n.d.) Review Colour in textile effluents-sources, measurement, discharge consents and simulation: a review. https://doi.org/10.1002/(SICI)1097-4660(199911)74:11

  80. Hao OJ, Kim H, Chiang PC (2000) Decolorization of wastewater. Crit Rev Environ Sci Technol 30:449–505. https://doi.org/10.1080/10643380091184237

    Article  Google Scholar 

  81. NOPR: Toxicity assessment and microbial degradation of azo dyes (n.d.). http://nopr.niscair.res.in/handle/123456789/6554. Accessed 22 May 2022

  82. Forgacs E, Cserhátia T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30:953–971

    Google Scholar 

  83. Pinheiro HM, Touraud E, Thomas O (2004) Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dye Pigment 61:121–139. https://doi.org/10.1016/J.DYEPIG.2003.10.009

    Article  Google Scholar 

  84. Razo-Flores E, Luijten M, Donlon B, Lettinga G, Field J (1997) Biodegradation of selected azo dyes under methanogenic conditions. Water Sci Technol 36:65–72

    Google Scholar 

  85. Zhao X, Hardin IR (2007) HPLC and spectrophotometric analysis of biodegradation of azo dyes by Pleurotus ostreatus. Dye Pigment 73:322–325. https://doi.org/10.1016/J.DYEPIG.2005.11.014

    Article  Google Scholar 

  86. Brissos V, Pereira L, Munteanu FD, Cavaco-Paulo A, Martins LO (2009) Expression system of CotA-laccase for directed evolution and high-throughput screenings for the oxidation of high-redox potential dyes. Biotechnol J 4:558–563. https://doi.org/10.1002/BIOT.200800248

    Article  Google Scholar 

  87. Pereira L, Coelho AV, Viegas CA, dos Santos MMC, Robalo MP, Martins LO (2009) Enzymatic biotransformation of the azo dye Sudan Orange G with bacterial CotA-laccase. J Biotechnol 139:68–77. https://doi.org/10.1016/J.JBIOTEC.2008.09.001

    Article  Google Scholar 

  88. Ames BN, McCann J, Yamasaki E (1975) Methods for detecting carcinogens and mutagens with the salmonella/mammalian-microsome mutagenicity test. Mutat Res Mutagen Relat Subj 31:347–363. https://doi.org/10.1016/0165-1161(75)90046-1

    Article  Google Scholar 

  89. Mathur N, Bhatnagar P, Sharma P, Review of the mutagenicity of textile dye products (2249). www.environmentaljournal.org. Accessed 22 May 2022

  90. Shrestha S, Kazama F (2007) Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan. Environ Model Softw 22:464–475. https://doi.org/10.1016/J.ENVSOFT.2006.02.001

    Article  Google Scholar 

  91. Alparslan E, Aydöner C, Tufekci V, Tüfekci H (2007) Water quality assessment at Ömerli Dam using remote sensing techniques. Environ Monit Assess 1351(135):391–398. https://doi.org/10.1007/S10661-007-9658-6

  92. Khan S, Malik A (2014) Environmental and health effects of textile industry wastewater. Environ Deterior Hum Heal Nat Anthropog Determ 55–71. https://doi.org/10.1007/978-94-007-7890-0_4

  93. Puvaneswari N, Muthukrishnan J, Gunasekaran P (2006) Toxicity assessment and microbial degradation of azo dyes. Indian J Exp Biol 44:618–626

    Google Scholar 

  94. de Oliveira Neto GC, da Silva PC, Tucci HNP, Amorim M (2021) Reuse of water and materials as a cleaner production practice in the textile industry contributing to blue economy. J Clean Prod 305:127075. https://doi.org/10.1016/J.JCLEPRO.2021.127075

  95. Nawaz MS, Ahsan M (2014) Comparison of physico-chemical, advanced oxidation and biological techniques for the textile wastewater treatment. Alex Eng J 53:717–722. https://doi.org/10.1016/J.AEJ.2014.06.007

    Article  Google Scholar 

  96. Samchetshabam G, Choudhury TG, Gita S (2017) Impact of textile dyes waste on aquatic environments and its treatment wastewater management view project centre of excellence on fisheries and aquaculture biotechnology (CoE-FAB) view project. https://www.researchgate.net/publication/321443064. Accessed 22 May 2022

  97. Ejder-Korucu M, Gürses A, Dogar Ç, Sharma SK, Açikyildiz M (2015) Removal of organic dyes from industrial effluents: an overview of physical and biotechnological applications. Green Chem Dye Remov Waste Water Res Trends Appl 1–34. https://doi.org/10.1002/9781118721001.CH1

  98. Khan R, Bhawana P, Fulekar MH (2013) Microbial decolorization and degradation of synthetic dyes: a review. Rev Environ Sci Biotechnol 12:75–97. https://doi.org/10.1007/S11157-012-9287-6/FIGURES/5

    Article  Google Scholar 

  99. Wong JKH, Tan HK, Lau SY, Yap PS, Danquah MK (2019) Potential and challenges of enzyme incorporated nanotechnology in dye wastewater treatment: a review. J Environ Chem Eng 7:103261. https://doi.org/10.1016/J.JECE.2019.103261

    Article  Google Scholar 

  100. Agnihotri S, Sillu D, Sharma G, Arya RK (2018) Photocatalytic and antibacterial potential of silver nanoparticles derived from pineapple waste: process optimization and modeling kinetics for dye removal. Appl Nanosci 88(8):2077–2092. https://doi.org/10.1007/S13204-018-0883-9

  101. Benz M (2012) Superparamagnetism: theory and applications

    Google Scholar 

  102. Kuppe C, Rusimova KR, Ohnoutek L, Slavov D, Valev VK (2020) “Hot” in plasmonics: temperature-related concepts and applications of metal nanostructures. Adv Opt Mater 8. https://doi.org/10.1002/adom.201901166

  103. Datta A, Priyam A, Bhattacharyya SN, Mukherjea KK, Saha A (2008) Temperature tunability of size in CdS nanoparticles and size dependent photocatalytic degradation of nitroaromatics, 322. https://doi.org/10.1016/j.jcis.2008.02.052

  104. Liu Q, Gao Y, Zhou Y, Tian N, Liang G, Ma N, Dai W (2019) Highly improved water resistance and Congo red uptake capacity with a Zn/Cu-BTC@MC composite adsorbent. J Chem Eng Data 64:3323–3330. https://doi.org/10.1021/ACS.JCED.9B00159/SUPPL_FILE/JE9B00159_SI_001.PDF

    Article  Google Scholar 

  105. Baig U, Faizan M, Sajid M (2021) Effective removal of hazardous pollutants from water and deactivation of water-borne pathogens using multifunctional synthetic adsorbent materials: a review. J Clean Prod 302:126735. https://doi.org/10.1016/J.JCLEPRO.2021.126735

    Article  Google Scholar 

  106. Amiri M, Salavati-Niasari M, Akbari A, Gholami T (2017) Removal of malachite green (a toxic dye) from water by cobalt ferrite silica magnetic nanocomposite: herbal and green sol-gel autocombustion synthesis. Int J Hydrogen Energy 42:24846–24860. https://doi.org/10.1016/J.IJHYDENE.2017.08.077

    Article  Google Scholar 

  107. Samadder R, Akter N, Roy AC, Uddin MM, Hossen MJ, Azam MS (2020) Magnetic nanocomposite based on polyacrylic acid and carboxylated cellulose nanocrystal for the removal of cationic dye. RSC Adv 10:11945–11956. https://doi.org/10.1039/D0RA00604A

    Article  ADS  Google Scholar 

  108. Ramalingam B, Khan MMR, Mondal B, Mandal AB, Das SK (2015) Facile synthesis of silver nanoparticles decorated magnetic-chitosan microsphere for efficient removal of dyes and microbial contaminants. ACS Sustain Chem Eng 3:2291–2302. https://doi.org/10.1021/ACSSUSCHEMENG.5B00577/SUPPL_FILE/SC5B00577_SI_001.PDF

    Article  Google Scholar 

  109. Aizat MA, Aziz F (2019) Chitosan nanocomposite application in wastewater treatments. Nanotechnol Water Wastewater Treat Theory Appl 243–265. https://doi.org/10.1016/B978-0-12-813902-8.00012-5

  110. Bhattacharya S, Samanta SK (2016) Soft-nanocomposites of nanoparticles and nanocarbons with supramolecular and polymer gels and their applications. Chem Rev 116:11967–12028. https://doi.org/10.1021/ACS.CHEMREV.6B00221/ASSET/IMAGES/MEDIUM/CR-2016-00221K_0066.GIF

    Article  Google Scholar 

  111. Mehta M, Sharma M, Pathania K, Jena PK, Bhushan I (2021) Degradation of synthetic dyes using nanoparticles: a mini-review. Environ Sci Pollut Res 28:49434–49446. https://doi.org/10.1007/S11356-021-15470-5/TABLES/3

    Article  Google Scholar 

  112. Dadhich BK, Bhushan B, Saha A, Priyam A (2018) Folate-directed shape-transformative synthesis of hollow silver nanocubes: plasmon tunability, growth kinetics, and catalytic applications. ACS Appl Nano Mater 1. https://doi.org/10.1021/acsanm.8b01110

  113. Jiang R, Zhu HY, Fu YQ, Jiang ST, Zong EM, Zhu JQ, Zhu YY, Chen LF (2021) Colloidal CdS sensitized nano-ZnO/chitosan hydrogel with fast and efficient photocatalytic removal of congo red under solar light irradiation. Int J Biol Macromol 174:52–60. https://doi.org/10.1016/J.IJBIOMAC.2021.01.077

    Article  Google Scholar 

  114. Pandiselvi K, Thambidurai S (2015) Synthesis of adsorption cum photocatalytic nature of polyaniline-ZnO/chitosan composite for removal of textile dyes. New Pub Balaban 57:8343–8357. https://doi.org/10.1080/19443994.2015.1019365

    Article  Google Scholar 

  115. Ma X, Yang ST, Tang H, Liu Y, Wang H (2015) Competitive adsorption of heavy metal ions on carbon nanotubes and the desorption in simulated biofluids. J Colloid Interface Sci 448:347–355. https://doi.org/10.1016/J.JCIS.2015.02.042

    Article  ADS  Google Scholar 

  116. Kandy SB, Simon GP, Cheng W, Zank J, Saito K, Bhattacharyya AR (2019) Effect of organic modification on multiwalled carbon nanotube dispersions in highly concentrated emulsions. ACS Omega 4:6647–6659. https://doi.org/10.1021/ACSOMEGA.8B03179

  117. Sacco O, Venditto V, Pragliola S, Vaiano V, Ma W, García-López EI (2021) Catalytic composite systems based on N-doped TiO2/polymeric materials for visible-light-driven pollutant degradation: a mini review. Photochem 1:330–344. https://doi.org/10.3390/PHOTOCHEM1030021

  118. Sacco O, Vaiano V, Rizzo L, Sannino D (2018) Photocatalytic activity of a visible light active structured photocatalyst developed for municipal wastewater treatment. J Clean Prod 175:38–49. https://doi.org/10.1016/J.JCLEPRO.2017.11.088

    Article  Google Scholar 

  119. Yu J, Kiwi J, Wang T, Pulgarin C, Rtimi S (2019) Evidence for a dual mechanism in the TiO2/CuxO photocatalyst during the degradation of sulfamethazine under solar or visible light: critical issues. J Photochem Photobiol A Chem 375:270–279. https://doi.org/10.1016/J.JPHOTOCHEM.2019.02.033

    Article  Google Scholar 

  120. Akhtar T, Nasir H, Sitara E, Bukhari SAB, Ullah S, Iqbal RMA (2022) Efficient photocatalytic degradation of nitrobenzene by copper-doped TiO2: kinetic study, degradation pathway, and mechanism. Environ Sci Pollut Res 1–12. https://doi.org/10.1007/S11356-022-19422-5/FIGURES/11

  121. Yu J, Kiwi J, Wang T, Pulgarin C, Rtimi S (2019) Duality in the mechanism of hexagonal ZnO/CuxO nanowires inducing sulfamethazine degradation under solar or visible light, Catalysts 9:916. https://doi.org/10.3390/CATAL9110916

  122. Chauhan A, Verma R, Kumari S, Sharma A, Shandilya P, Li X, Batoo KM, Imran A, Kulshrestha S, Kumar R (2020) Photocatalytic dye degradation and antimicrobial activities of Pure and Ag-doped ZnO using Cannabis sativa leaf extract. Sci Rep 101(10):1–16. https://doi.org/10.1038/s41598-020-64419-0

  123. Saleh R, Djaja NF (2014) UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles. Superlattices Microstruct 74:217–233. https://doi.org/10.1016/J.SPMI.2014.06.013

    Article  ADS  Google Scholar 

  124. Wang H, Gao X, Duan G, Yang X, Liu X (2015) Facile preparation of anatase-brookite-rutile mixed-phase N-doped TiO2 with high visible-light photocatalytic activity. J Environ Chem Eng 3:603–608. https://doi.org/10.1016/J.JECE.2015.02.006

    Article  Google Scholar 

  125. Milošević I, Rtimi S, Jayaprakash A, van Driel B, Greenwood B, Aimable A, Senna M, Bowen P (2018) Synthesis and characterization of fluorinated anatase nanoparticles and subsequent N-doping for efficient visible light activated photocatalysis. Colloids Surf B Biointerfaces 171:445–450

    Google Scholar 

  126. Milosevic I, Jayaprakash A, Greenwood B, Van Driel B, Rtimi S, Bowen P (2017) Synergistic effect of fluorinated and N doped TiO2 nanoparticles leading to different microstructure and enhanced photocatalytic bacterial inactivation. Nanomaterials 7:391

    Google Scholar 

  127. Miao J, Lu HB, Habibi D, Khiadani MH, Zhang LC (2015) Photocatalytic degradation of the Azo dye acid red 14 in nanosized TiO2 suspension under simulated solar light. CLEAN–Soil Air Water 43:1037–1043. https://doi.org/10.1002/CLEN.201400383

    Article  Google Scholar 

  128. Akerdi AG, Bahrami SH, Arami M, Pajootan E (2016) Photocatalytic discoloration of Acid Red 14 aqueous solution using titania nanoparticles immobilized on graphene oxide fabricated plate. Chemosphere 159:293–299

    Google Scholar 

  129. Eskandarian L, Pajootan E, Arami M (2014) Novel super adsorbent molecules, carbon nanotubes modified by dendrimer miniature structure, for the removal of trace organic dyes. Ind Eng Chem Res 53:14841–14853. https://doi.org/10.1021/IE502414T

    Article  Google Scholar 

  130. Wazir MB, Daud M, Ali F, Al-Harthi MA (2020) Dendrimer assisted dye-removal: a critical review of adsorption and catalytic degradation for wastewater treatment. J Mol Liq 315. https://doi.org/10.1016/J.MOLLIQ.2020.113775

  131. Abbasi A, Ghanbari D, Salavati-Niasari M, Hamadanian M (2016) Photo-degradation of methylene blue: photocatalyst and magnetic investigation of Fe2O3–TiO2 nanoparticles and nanocomposites. J Mater Sci Mater Electron 27:4800–4809. https://doi.org/10.1007/S10854-016-4361-4/FIGURES/14

    Article  Google Scholar 

  132. Li R, Jia Y, Bu N, Wu J, Zhen Q (2015) Photocatalytic degradation of methyl blue using Fe2O3/TiO2 composite ceramics. J Alloys Compd 643:88–93. https://doi.org/10.1016/J.JALLCOM.2015.03.266

    Article  Google Scholar 

  133. Baghriche O, Rtimi S, Pulgarin C, Kiwi J (2017) Polystyrene CuO/Cu2O uniform films inducing MB-degradation under sunlight. Catal Today 284:77–83. https://doi.org/10.1016/J.CATTOD.2016.10.018

    Article  Google Scholar 

  134. Sun B, Meng Y, Song T, Shi J, He X, Zhao P (2022) Electron transfer strategies to regulate carriers’ separation for intensive pyroelectric dynamic therapy with simultaneous photothermal therapy. Front Chem 10. https://doi.org/10.3389/FCHEM.2022.874641

  135. Raizada P, Singh P, Kumar A, Sharma G, Pare B, Jonnalagadda SB, Thakur P (2014) Solar photocatalytic activity of nano-ZnO supported on activated carbon or brick grain particles: role of adsorption in dye degradation. Appl Catal A Gen 486:159–169. https://doi.org/10.1016/J.APCATA.2014.08.043

    Article  Google Scholar 

  136. Rostami-Vartooni A, Nasrollahzadeh M, Alizadeh M (2016) Green synthesis of seashell supported silver nanoparticles using Bunium persicum seeds extract: application of the particles for catalytic reduction of organic dyes. J Colloid Interface Sci 470:268–275. https://doi.org/10.1016/J.JCIS.2016.02.060

    Article  ADS  Google Scholar 

  137. Seery MK, George R, Floris P, Pillai SC (2007) Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J Photochem Photobiol Chem 189:258–263. https://doi.org/10.1016/J.JPHOTOCHEM.2007.02.010

    Article  Google Scholar 

  138. Mahajan J, Jeevanandam P (2019) Novel thermal decomposition approach for the synthesis of TiO2@Ag core-shell nanocomposites and their application for catalytic reduction of 4-nitrophenol. J Nanopart Res 21:1–17. https://doi.org/10.1007/S11051-019-4500-Y/FIGURES/11

    Article  Google Scholar 

  139. Dadhich BK, Bhushan B, Saha A, Priyam A (2018) Folate-directed shape-transformative synthesis of hollow silver nanocubes: plasmon tunability, growth kinetics, and catalytic applications. ACS Appl Nano Mater. https://doi.org/10.1021/acsanm.8b01110

  140. Lindley SA, Cooper JK, Rojas-Andrade MD, Fung V, Leahy CJ, Chen S, Zhang JZ (2018) Highly tunable hollow gold nanospheres: gaining size control and uniform galvanic exchange of sacrificial cobalt boride scaffolds. ACS Appl Mater Interfaces 10:12992–13001. https://doi.org/10.1021/ACSAMI.8B00726/SUPPL_FILE/AM8B00726_SI_001.PDF

    Article  Google Scholar 

  141. Khodadadi B, Bordbar M, Nasrollahzadeh M (2017) Achillea millefolium L. extract mediated green synthesis of waste peach kernel shell supported silver nanoparticles: application of the nanoparticles for catalytic reduction of a variety of dyes in water. J Colloid Interface Sci 493:85–93. https://doi.org/10.1016/J.JCIS.2017.01.012

  142. Zeghioud H, Khellaf N, Amrane A, Djelal H, Elfalleh W, Assadi AA, Rtimi S (2017) Photocatalytic performance of TiO2 impregnated polyester for the degradation of reactive green 12: implications of the surface pretreatment and the microstructure. J Photochem Photobiol Chem 346:493–501. https://doi.org/10.1016/J.JPHOTOCHEM.2017.07.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavya Bhushan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhushan, B., Priyam, A. (2023). Textile Waste: The Genesis, Environmental Impact and Remediation Using Nanomaterials. In: Mishra, A.K. (eds) Nano-engineered Materials for Textile Waste Remediation. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-19-7978-1_2

Download citation

Publish with us

Policies and ethics