Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automation of Brain Tumor Segmentation Using Deep Learning

  • Chapter
  • First Online:
Deep Learning Technologies for the Sustainable Development Goals

Part of the book series: Advanced Technologies and Societal Change ((ATSC))

Abstract

Today also, radiologist analyze the MR images manually based on their experience and knowledge for segmenting the tumor. Use some graphical software to make the report about the presence of the tumor, its size, and other features. Based on this report doctors diagnose the patient, it is the main source for any doctor to start the treatment of the patient. However, as the MRI reports are based on the experience of the radiologist so it is a big challenge to maintain uniformity in the reports generated from the different MR imaging centers. Therefore, automation in this particular field is very much required for better precision and to maintain uniformity in the report. Therefore, doctor can diagnose the patient in much better way. Deep learning playing a vital role in automating the process of brain tumor and other organ segmentation using MR images. Many researchers developed various state-of-art methods to automate the process of brain tumor segmentation in MR images. There are multiple deep learning methods such as stacked auto- encoder, artificial neural network, convolutional neural network, and Unet used for the process of segmenting the medial images, where CNN is the most successful method for segmenting. In this chapter, the importance of automatic brain tumor segmentation approach. CNN and process of convolution, max pooling discussed in detail. Moreover, application of CNN for automatically segmenting brain tumor also discussed with some state-of-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BT:

Brain tumor

BTS:

Brain tumor segmentation

CAD:

Computer aided diagnosis

CNN:

Convolutional neural network

FCL:

Fully connected layer

GAP:

Global average pooling

GMP:

Global max pooling

ML:

Machine learning

MRI:

Medical resonance imaging

SOP:

Sum of product

References

  1. American Society of Clinical Oncology (ASCO). http://www.asco.org/

  2. John, P.: Brain tumor classification using wavelet and texture based neural network. Int. J. Sci. Eng. Res. 3(10), 1–7 (2012)

    Google Scholar 

  3. Alfonse, M., Salem, A.B.M.: An automatic classification of brain tumors through MRI using support vector machine. Egy. Comp. Sci. J. 40(3) (2016)

    Google Scholar 

  4. Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)

    Article  Google Scholar 

  5. Dandıl, E., Çakıroğlu, M., Ekşi, Z.: Computer-aided diagnosis of malign and benign brain tumors on MR images. In: International Conference on ICT Innovations, pp. 157–166. Springer, Cham (2014)

    Google Scholar 

  6. Xiao, Z., Huang, R., Ding, Y., Lan, T., Dong, R., Qin, Z., et al.: A deep learning-based segmentation method for brain tumor in MR images. In: 2016 IEEE 6th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS), pp. 1–6. IEEE (2016)

    Google Scholar 

  7. Balasubramanian, C., Saravanan, S., Srinivasagan, K.G., Duraiswamy, K.: Automatic segmentation of brain tumor from MR image using region growing technique. Life Sci. J. 10(2) (2013)

    Google Scholar 

  8. Selvakumar, J., Lakshmi, A., Arivoli, T.: Brain tumor segmentation and its area calculation in brain MR images using K-mean clustering and Fuzzy C-mean algorithm. In: IEEE-International Conference on Advances in Engineering, Science and Management (ICAESM-2012), pp. 186–190. IEEE (2012)

    Google Scholar 

  9. Clarke, L.P., Velthuizen, R.P., Camacho, M.A., Heine, J.J., Vaidyanathan, M., Hall, L.O., et al.: MRI segmentation: methods and applications. Magn. Reson. Imaging 13(3), 343–368 (1995)

    Article  Google Scholar 

  10. Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M.P., et al.: A survey on deep learning: algorithms, techniques, and applications. ACM Comput. Surveys (CSUR) 51(5), 1–36 (2018)

    Article  Google Scholar 

  11. Pereira, S., Alves, V., Silva, C.A.: Adaptive feature recombination and recalibration for semantic segmentation: application to brain tumor segmentation in MRI. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 706–714. Springer, Cham (2018)

    Google Scholar 

  12. Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M., Seliya, N., Wald, R., Muharemagic, E.: Deep learning applications and challenges in big data analytics. J. Big Data 2(1), 1–21 (2015)

    Article  Google Scholar 

  13. Gao, X.W., Hui, R., Tian, Z.: Classification of CT brain images based on deep learning networks. Comput. Methods Programs Biomed. 138, 49–56 (2017)

    Article  Google Scholar 

  14. Zhao, L., Jia, K.: Deep feature learning with discrimination mechanism for brain tumor segmentation and diagnosis. In: 2015 International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), pp. 306–309. IEEE (2015)

    Google Scholar 

  15. Wu, J.: Introduction to convolutional neural networks. National Key Lab for Novel Software Technology, vol. 5, p. 23. Nanjing University, China (2017)

    Google Scholar 

  16. Stock, K., Pouchet, L.N., Sadayappan, P.: Using machine learning to improve automatic vectorization. ACM Trans. Architecture Code Optimization (TACO) 8(4), 1–23 (2012)

    Article  Google Scholar 

  17. O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015)

  18. Rezaeil, K., Agahi, H.: Malignant and benign brain tumor segmentation and classification using SVM with weighted kernel width. Signal Image Process. Int. J. (SIPIJ) 8(2), 25–36 (2017)

    Article  Google Scholar 

  19. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629 (2018)

  20. Amin, J., et al.: Brain tumor detection using statistical and machine learning method. Comput. Methods Programs Biomed. 177, 69–79 (2019)

    Google Scholar 

  21. Havaei, M., et al.: Within-brain classification for brain tumor segmentation. Int. J. Comput. Assist. Radiol. Surg. 11(5), 777–788 (2016)

    Google Scholar 

  22. Zhao, X., et al.: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med. Image Anal. 43, 98–111 (2018)

    Google Scholar 

  23. Işın, A., Direkoğlu, C., Şah, M.: Review of MRI-based brain tumor image segmentation using deep learning methods. Procedia Comput. Sci. 102, 317–324 (2016)

    Article  Google Scholar 

  24. Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Imag. Anal. 35, 18–31 (2017)

    Google Scholar 

  25. Magadza, T., Viriri, S.: Deep learning for brain tumor segmentation: a survey of state-of-the-art. J. Imag. 7(2), 19 (2021)

    Article  Google Scholar 

  26. Suthaharan, S.: Support vector machine. Machine learning models and algorithms for big data classification, pp. 207–235. Springer, Boston, MA (2016)

    MATH  Google Scholar 

  27. Peng, C.-Y.J., Lee, K.L., Ingersoll, G.M.: An introduction to logistic regression analysis and reporting. J. Educ. Res. 96(1), 3–14 (2002)

    Google Scholar 

  28. Livingston, F.: Implementation of Breiman’s random forest machine learning algorithm. ECE591Q Mach. Learn. J. Paper 1–13 (2005)

    Google Scholar 

  29. Bijalwan, V., et al.: KNN based machine learning approach for text and document mining. Int. J. Database Theory Appl. 7(1), 61–70 (2014)

    Google Scholar 

  30. Ahmad, A., Dey, L.: A k-mean clustering algorithm for mixed numeric and categorical data. Data Knowl. Eng. 63(2), 503–527 (2007)

    Article  Google Scholar 

  31. Mohanaiah, P., Sathyanarayana, P., GuruKumar, L.: Image texture feature extraction using GLCM approach. Int. J. Sci. Res. Publ. 3(5), 1–5 (2013)

    Google Scholar 

  32. Bradley, S.D.: Optimizing a scheme for run length encoding. Proc. IEEE 57(1), 108–109 (1969)

    Article  Google Scholar 

  33. Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)

    Article  MATH  Google Scholar 

  34. Miller, David, R.H., Leek, T., Schwartz, R.M.: A hidden Markov model information retrieval system. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (1999)

    Google Scholar 

  35. Angulakshmi, M., Lakshmi Priya, G.G.: Automated brain tumour segmentation techniques—a review. Int. J. Imaging Syst. Technol. 27(1), 66–77 (2017)

    Google Scholar 

  36. Wang, F., et al.: The application of series multi-pooling convolutional neural networks for medical image segmentation. Int. J. Distrib. Sensor Netw. 13(12), 1550147717748899 (2017)

    Google Scholar 

  37. Menze, B.H., Jakab, A., Bauer, S., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE T Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  38. Kistler, M., Bonaretti, S., Pfahrer, M., et al.: The virtual skeleton database: an open access repository for biomedical research and collaboration. J. Med. Internet Res. 15(11), e245 (2013)

    Article  Google Scholar 

  39. Pereira, S., et al.: On hierarchical brain tumor segmentation in MRI using fully convolutional neural networks: a preliminary study. In: 2017 IEEE 5th Portuguese Meeting on Bioengineering (ENBENG). IEEE (2017)

    Google Scholar 

  40. Hussain, S., Anwar, S.M., Majid, M.: Segmentation of glioma tumors in brain using deep convolutional neural network. Neurocomputing 282, 248–261 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, A. (2023). Automation of Brain Tumor Segmentation Using Deep Learning. In: Kadyan, V., Singh, T.P., Ugwu, C. (eds) Deep Learning Technologies for the Sustainable Development Goals. Advanced Technologies and Societal Change. Springer, Singapore. https://doi.org/10.1007/978-981-19-5723-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5723-9_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5722-2

  • Online ISBN: 978-981-19-5723-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics