Abstract
In the low earth orbit (LEO) satellite networks, a single satellite may cover areas with various population quantity, economic conditions and time zones. In this case, networks have time-varying traffic load and may face with unbalanced load distribution. Moreover, software defined networking (SDN) has dynamic monitoring function that can be implemented in the satellite network to observe the real-time status of satellite links and nodes, and quickly update routing tables. However, high link utilization is likely to cause local network congestion, resulting in increased delay. To solve this problem, we propose a load balancing algorithm under the delay constraint. The experimental results show that our proposed scheme can reasonably allocate link bandwidth under the delay requirement and achieve lower end-to-end delay and higher system throughput.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rao, Y., Wang, R.-C.: Agent-based load balancing routing for LEO satellite networks. Comput. Netw. 54(17), 3187–3195 (2010)
Open Networking Foundation: Software-defined networking: the new norm for networks. ONF White Pap. 2, 2–6 (2012)
Yeganeh, S.H., Ganjali, Y.: Kandoo: a framework for efficient and scalable offloading of control applications. In: The Workshop on Hot Topics in Software Defined Networks, pp. 19–24 (2012)
Lee, C.H., Kim, Y.T.: QoS-aware hierarchical token bucket (QHTB) queuing disciplines for QoS-guaranteed DiffServ provisioning with optimized bandwidth utilization and priority-based preemption. In: International Conference on Information NETWORKING, pp. 351–358 (2013)
Maxwell, G., Mook, R.V., Oosterhout, M.V., Schroeder, P.B., Spaans, J.: Linux advanced routing and traffic control howto. Acta Medica Scandinavica 145(S280), 1122 (2002)
Valenzuela, J.L., Monleon, A., San Esteban, I., Portoles, M.: A hierarchical token bucket algorithm to enhance QoS in IEEE 802.11: proposal, implementation and evaluation. In: Vehicular Technology Conference, VTC 2004-Fall, vol. 4, pp. 2659–2662. IEEE (2004)
Ren, S., Feng, Q., Wang, Y., Dou, W.: A service curve of hierarchical token bucket queue discipline on software defined networks based on deterministic network calculus: an analysis and simulation. J. Adv. Comput. Netw. 5(1), (2017)
Guck, J.W., Kellerer, W.: Achieving end-to-end real-time quality of service with software defined networking. In: IEEE International Conference on Cloud Networking, pp. 70–76 (2014)
Guck, J.W., Bemten, A.V., Kellerer, W.: DetServ: network models for real-time QoS provisioning in SDN-based industrial environments. IEEE Trans. Netw. Serv. Manag. 14(1003), 1017 (2017)
Lin, C.R., Chen, Y.J., Wang, L.C.: Handoff delay analysis in SDN-enabled mobile networks: a network calculus approach. In: IEEE Vehicular Technology Conference, pp. 1–5 (2017)
Huang, J., He, Y., Duan, Q., Yang, Q., Wang, W.: Admission control with flow aggregation for QoS provisioning in software-defined network. In: Global Communications Conference, pp. 1182–1186 (2014)
Taleb, T., Mashimo, D., Jamalipour, A., Hashimoto, K.: SAT04-3: ELB: an explicit load balancing routing protocol for multi-hop NGEO satellite constellations. In: Global Telecommunications Conference, GLOBECOM 2006, pp. 1–5. IEEE (2007)
Song, G., Chao, M., Yang, B., Zheng, Y.: TLR: a traffic-lightbased intelligent routing strategy for NGEO satellite ip networks. IEEE Trans. Wirel. Commun. 13(6), 3380–3393 (2014)
Li, X., Tang, F., Chen, L., et al.: A state-aware and load-balanced routing model for LEO satellite networks. In: 2017 IEEE Global Communications Conference, GLOBECOM 2017, pp. 1–6. IEEE (2017)
Le Boudec, J.-Y., Thiran, P. (eds.): Network Calculus - A Theory of Deterministic Queuing Systems for the Internet. LNCS, vol. 2050. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45318-0
Fidler, M.: An end-to-end probabilistic network calculus with moment generating functions. In: IEEE International Workshop on Quality of Service, pp. 261–270 (2006)
Lara, A., Kolasani, A., Ramamurthy, B.: Network innovation using openflow: a survey. IEEE Commun. Surv. Tutor. 16(1), 493–512 (2014)
Lantz, B., Heller, B., Mckeown, N.: A network in a laptop: rapid prototyping for software-defined networks. In: ACM Workshop on Hot Topics in Networks, HOTNETS 2010, Monterey, CA, USA, pp. 1–6, October 2010
Ryu controller. http://osrg.github.io/ryu/
Kaur, S., Kumar, K., Singh, J., Ghumman, N.S.: Round-robin based load balancing in software defined networking. In: 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 2136–2139. IEEE (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Ma, Z., Di, X., Jiang, Y., Jiang, H., Yang, H. (2019). Delay-Constrained Load Balancing in the SDN. In: Yu, Q. (eds) Space Information Networks. SINC 2018. Communications in Computer and Information Science, vol 972. Springer, Singapore. https://doi.org/10.1007/978-981-13-5937-8_14
Download citation
DOI: https://doi.org/10.1007/978-981-13-5937-8_14
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-5936-1
Online ISBN: 978-981-13-5937-8
eBook Packages: Computer ScienceComputer Science (R0)