Nothing Special   »   [go: up one dir, main page]

Skip to main content

Non-malleable Codes from Leakage Resilient Cryptographic Primitives

  • Conference paper
  • First Online:
Information Security and Cryptology (Inscrypt 2023)

Abstract

Non-malleable codes (NMC) are used as a relaxation of error correction and error detection codes to guarantee strong privacy where correctness is not the main concern. Usually, a coding scheme is said to be non-malleable with respect to a class of tampering function if any tampering with the codeword, the underlying function changes the codeword to a completely unrelated one, i.e., \(\bot \) or same, in case of unsuccessful tampering. The real life application of such codeword is to provide security against leakage and tampering attacks on the memory, which is also called active physical attacks or hardware attacks. Standard version of non-malleable codes are used to protect highly sensitive data (i.e., secret key of any cryptographic scheme) on private memory of the device. In literature, leakage resilient authenticated encryptions (AE) are used to design such codeword. We show a generic framework to design leakage resilient authenticated encryption and prove it non-malleable with respect to one-time tampering attack. The instantiation of such codeword is based on leakage resilient IV-based encryption scheme along with leakage resilient CBC-MAC and 1-more weakly extractable leakage-resilient hash function (wECRH). When the tampering experiment of our strong NMC returns \(\bot \), the security is reduced to the security of authenticated encryption and 1-more weakly extractable leakage-resilient hash function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\tau \) is the security parameter.

References

  1. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors in cryptographic computations. J. Cryptol. 14(2), 101–119 (2001)

    Article  MathSciNet  Google Scholar 

  2. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_41

    Chapter  Google Scholar 

  3. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_33

    Chapter  Google Scholar 

  4. Joan, D., Vincent, R.: The Design of Rijndael. Springer, New York (2002). https://doi.org/10.1007/978-3-662-04722-4

    Book  Google Scholar 

  5. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side channel(s): attacks and assessment methodologies. In: Kaliski, B.S., Jr., Koc, C.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_4

    Chapter  Google Scholar 

  6. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_24

    Chapter  Google Scholar 

  7. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_27

    Chapter  Google Scholar 

  8. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_2

    Chapter  Google Scholar 

  9. Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung, M., Oswald, E.: Leakage resilient cryptography in practice. In: Sadeghi, A.R., Naccache, D. (eds.) Towards Hardware-Intrinsic Security, pp. 99–134. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14452-3_5

    Chapter  Google Scholar 

  10. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Yao, A.C.-C. (ed.) ICS 2010, Beijing, China, 5–7 January, pp. 434–452. Tsinghua University Press (2010)

    Google Scholar 

  11. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model. In: Safavi-Naini, R. (ed.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_30

    Chapter  Google Scholar 

  12. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: ITCS, pp. 326–349 (2012)

    Google Scholar 

  13. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 239–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_14

    Chapter  Google Scholar 

  14. Abdalla, M., Belaïd, S., Fouque, P.-A.: Leakage-resilient symmetric encryption via re-keying. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 471–488. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-1_27

    Chapter  Google Scholar 

  15. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. In: STOC, pp. 774–783 (2014)

    Google Scholar 

  16. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and applications. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, pp. 459–468. ACM (2015)

    Google Scholar 

  17. Pereira, O., Standaert, F., Vivek, S.: Leakage-resilient authentication and encryption from symmetric cryptographic primitives. In: CCS 2015, pp. 96–108 (2015)

    Google Scholar 

  18. Kiayias, A., Liu, F., Tselekounis, Y.: Practical non-malleable codes from l-more extractable hash functions. In: CCS, pp. 1317–1328 (2016)

    Google Scholar 

  19. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Optimal computational split-state non-malleable codes. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 393–417. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0_15

    Chapter  Google Scholar 

  20. Barwell, G., Martin, D.P., Oswald, E., Stam, M.: Authenticated encryption in the face of protocol and side channel leakage. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 693–723. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_24

    Chapter  Google Scholar 

  21. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. J. ACM 65(4), 20:1–20:32 (2018)

    Google Scholar 

  22. Fehr, S., Karpman, P., Mennink, B.: Short non-malleable codes from related-key secure block ciphers. IACR Trans. Symmetric Cryptol. 336–352 (2018)

    Google Scholar 

  23. Aggarwal, D., Obremski, M.: A constant-rate non-malleable code in the split-state model. In: IEEE 61st Annual Symposium on Foundations of Computer Science, FOCS (2020)

    Google Scholar 

  24. Krämer, J., Struck, P.: Leakage-resilient authenticated encryption from leakage-resilient pseudorandom functions. In: Bertoni, G.M., Regazzoni, F. (eds.) COSADE 2020. LNCS, vol. 12244, pp. 315–337. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68773-1_15

    Chapter  Google Scholar 

  25. Brian, G., Faonio, A., Ribeiro, L., Venturi, D.: Short non-malleable codes from related-key secure block ciphers, revisited. IACR Trans. Symmetric Cryptol. 1–19 (2022)

    Google Scholar 

  26. Ghosal, A.K., Ghosh, S., Roychowdhury, D.: Practical non-malleable codes from symmetric-key primitives in 2-split-state model. In: Ge, C., Guo, F. (eds.) Provable and Practical Security (2022)

    Google Scholar 

  27. Kiayias, A., Liu, F.H., Tselekounis, Y.: Leakage Resilient l-more Extractable Hash and Applications to Non-Malleable Cryptography. Cryptology ePrint Archive, Report 2022/1745 (2022)

    Google Scholar 

  28. Ghosal, A.K., Roychowdhury, D.: Non-malleable codes from authenticated encryption in split-state model. In: Prabhu, S., Pokhrel, S.R., Li, G. (eds.) Applications and Techniques in Information Security (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anit Kumar Ghosal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghosal, A.K., chowdhury, D.R. (2024). Non-malleable Codes from Leakage Resilient Cryptographic Primitives. In: Ge, C., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2023. Lecture Notes in Computer Science, vol 14527. Springer, Singapore. https://doi.org/10.1007/978-981-97-0945-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0945-8_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0944-1

  • Online ISBN: 978-981-97-0945-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics