Nothing Special   »   [go: up one dir, main page]

Skip to main content

Image Inpainting Forensics Algorithm Based on Dual-Domain Encoder-Decoder Network

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14491))

  • 331 Accesses

Abstract

Image inpainting can fill regions of images with plausible content and can also be used to remove specific objects and leave only faint traces in inpainted images, which pose serious security issues. At present, there are relatively few forensic works on image inpainting. Moreover, there is a problem of poor generalization. Therefore, This paper proposes a dual-domain encoder-decoder network (DDEDNet) based on different input types, which is a two-branch network. The first branch is a spatial domain-based encoder network (S-Encoder) used to capture the tampering traces left by image inpainting in the spatial domain; the second branch is an encoder network based on the frequency domain (F-Encoder), which is used to mine the subtle artifacts left in the frequency domain. Then a cross-modal attention fusion module (CMAF) is used to fuse the features of the two encoder networks to obtain rich fused features. Finally, attention-gated (AG) skip connections are utilized to improve localization performance by properly incorporating multi-scale features in the decoder. Experimental results show that in the face of data sets with both deep inpainting and traditional schemes, DDEDNet can locate the inpainting area more accurately, effectively resist JPEG compression and Gaussian noise attacks, and performs better generalization.

This work is supported by the National Natural Science Foundation of China (62172059, 62072055, 62102046, 62072056), the Natural Science Foundation of Hunan Province (2022JJ50318, 2022JJ30621, 2023JJ50331, 2022JJ30618, 2020JJ2029), the Hunan Provincial Key Research and Development Program (2022GK2019), the Scientific Research Fund of Hunan Provincial Education Department (22A0200, 22B0300).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azad, R., et al.: Medical image segmentation review: The success of u-net. arXiv preprint arXiv:2211.14830 (2022)

  2. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: Patchmatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28(3), 24 (2009)

    Article  Google Scholar 

  3. Bayar, B., Stamm, M.C.: Constrained convolutional neural networks: a new approach towards general purpose image manipulation detection. IEEE Trans. Inf. Forensics Secur. 13(11), 2691–2706 (2018)

    Article  Google Scholar 

  4. Bertalmio, M., Bertozzi, A.L., Sapiro, G.: Navier-stokes, fluid dynamics, and image and video inpainting. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001. IEEE (2001)

    Google Scholar 

  5. Chan, T.F., Shen, J.: Nontexture inpainting by curvature-driven diffusions. J. Vis. Commun. Image Represent. 12(4), 436–449 (2001)

    Article  Google Scholar 

  6. Chen, M., Sedighi, V., Boroumand, M., Fridrich, J.: Jpeg-phase-aware convolutional neural network for steganalysis of jpeg images. In: Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security, pp. 75–84 (2017)

    Google Scholar 

  7. Criminisi, A., Pérez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. IEEE Trans. Image Process. 13(9), 1200–1212 (2004)

    Article  Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  9. Gloe, T., Böhme, R.: The’dresden image database’for benchmarking digital image forensics. In: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 1584–1590 (2010)

    Google Scholar 

  10. Guo, Q., Gao, S., Zhang, X., Yin, Y., Zhang, C.: Patch-based image inpainting via two-stage low rank approximation. IEEE Trans. Visual Comput. Graph. 24(6), 2023–2036 (2017)

    Article  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. He, X., Li, W., Zhang, S., Li, K.: Efficient control of unscheduled packets for credit-based proactive transport. In: 2022 IEEE 28th International Conference on Parallel and Distributed Systems (ICPADS), pp. 593–600. IEEE (2023)

    Google Scholar 

  13. Herling, J., Broll, W.: High-quality real-time video in painting with pixmix. IEEE Trans. Visual Comput. Graph. 20(6), 866–879 (2014)

    Article  Google Scholar 

  14. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  15. Huang, J.B., Kang, S.B., Ahuja, N., Kopf, J.: Image completion using planar structure guidance. ACM Trans. Graph. (TOG) 33(4), 1–10 (2014)

    Google Scholar 

  16. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. (ToG) 36(4), 1–14 (2017)

    Article  Google Scholar 

  17. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  19. Levin, A., Zomet, A., Weiss, Y.: Learning how to inpaint from global image statistics. In: ICCV, vol. 1, pp. 305–312 (2003)

    Google Scholar 

  20. Li, A., et al.: Noise doesn’t lie: towards universal detection of deep inpainting. arXiv preprint arXiv:2106.01532 (2021)

  21. Li, H., Huang, J.: Localization of deep inpainting using high-pass fully convolutional network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8301–8310 (2019)

    Google Scholar 

  22. Li, H., Luo, W., Huang, J.: Localization of diffusion-based inpainting in digital images. IEEE Trans. Inf. Forensics Secur. 12(12), 3050–3064 (2017)

    Article  Google Scholar 

  23. Li, W., Chen, S., Li, K., Qi, H., Xu, R., Zhang, S.: Efficient online scheduling for coflow-aware machine learning clusters. IEEE Trans. Cloud Comput. 10(4), 2564–2579 (2020)

    Article  Google Scholar 

  24. Li, W., Yuan, X., Li, K., Qi, H., Zhou, X.: Leveraging endpoint flexibility when scheduling coflows across geo-distributed datacenters. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pp. 873–881. IEEE (2018)

    Google Scholar 

  25. Liang, Z., Yang, G., Ding, X., Li, L.: An efficient forgery detection algorithm for object removal by exemplar-based image inpainting. J. Vis. Commun. Image Represent. 30, 75–85 (2015)

    Article  Google Scholar 

  26. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  27. Liu, G., Reda, F.A., Shih, K.J., Wang, T.-C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_6

    Chapter  Google Scholar 

  28. Liu, X., Liu, Y., Chen, J., Liu, X.: Pscc-net: progressive spatio-channel correlation network for image manipulation detection and localization. IEEE Trans. Circuits Syst. Video Technol. 32(11), 7505–7517 (2022)

    Article  Google Scholar 

  29. Liu, Y., Li, W., Qu, W., Qi, H.: Bulb: lightweight and automated load balancing for fast datacenter networks. In: Proceedings of the 51st International Conference on Parallel Processing, pp. 1–11 (2022)

    Google Scholar 

  30. Lu, M., Niu, S.: A detection approach using lstm-cnn for object removal caused by exemplar-based image inpainting. Electronics 9(5), 858 (2020)

    Article  Google Scholar 

  31. Nazeri, K., Ng, E., Joseph, T., Qureshi, F.Z., Ebrahimi, M.: Edgeconnect: generative image inpainting with adversarial edge learning. arXiv preprint arXiv:1901.00212 (2019)

  32. Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts. Distill 1(10), e3 (2016)

    Google Scholar 

  33. Oktay, O., et al.: Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  34. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: Feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  35. Qian, Y., Yin, G., Sheng, L., Chen, Z., Shao, J.: Thinking in frequency: face forgery detection by mining frequency-aware clues. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 86–103. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_6

    Chapter  Google Scholar 

  36. Roy, A.G., Navab, N., Wachinger, C.: concurrent spatial and channel ‘Squeeze & excitation’ in fully convolutional networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 421–429. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_48

    Chapter  Google Scholar 

  37. Telea, A.: An image inpainting technique based on the fast marching method. J. Graph. Tools 9(1), 23–34 (2004)

    Article  Google Scholar 

  38. Vaswani, A., et al.: Attention is all you need. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  39. Wang, J., Liu, Y., Rao, S., Sherratt, R.S., Hu, J.: Enhancing security by using gift and ecc encryption method in multi-tenant datacenters. Comput. Mater. Continua 75(2), 3849–3865 (2023)

    Article  Google Scholar 

  40. Wang, J., Liu, Y., Rao, S., Zhou, X., Hu, J.: A novel self-adaptive multi-strategy artificial bee colony algorithm for coverage optimization in wireless sensor networks. Ad Hoc Netw. 103284 (2023)

    Google Scholar 

  41. Wang, J., Rao, S., Liu, Y., Sharma, P.K., Hu, J.: Load balancing for heterogeneous traffic in datacenter networks. J. Netw. Comput. Appl. 217, 103692 (2023)

    Article  Google Scholar 

  42. Wang, J., Yuan, D., Luo, W., Rao, S., Sherratt, R.S., Hu, J.: Congestion control using in-network telemetry for lossless datacenters. Comput. Mater. Continua 75(1), 1195–1212 (2023)

    Article  Google Scholar 

  43. Wei, W., Gu, H., Deng, W., Xiao, Z., Ren, X.: Abl-tc: a lightweight design for network traffic classification empowered by deep learning. Neurocomputing 489, 333–344 (2022)

    Article  Google Scholar 

  44. Wei, W., Gu, H., Wang, K., Li, J., Zhang, X., Wang, N.: Multi-dimensional resource allocation in distributed data centers using deep reinforcement learning. IEEE Trans. Netw. Serv. Manag. (2022)

    Google Scholar 

  45. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  46. Wu, H., Zhou, J.: Iid-net: image inpainting detection network via neural architecture search and attention. IEEE Trans. Circ. Syst. Video Technol. 32(3), 1172–1185 (2021)

    Article  Google Scholar 

  47. Wu, H., Zhou, J., Li, Y.: Deep generative model for image inpainting with local binary pattern learning and spatial attention. IEEE Trans. Multimedia 24, 4016–4027 (2021)

    Article  Google Scholar 

  48. Wu, Q., Sun, S.J., Zhu, W., Li, G.H., Tu, D.: Detection of digital doctoring in exemplar-based inpainted images. In: 2008 International Conference on Machine Learning and Cybernetics, vol. 3, pp. 1222–1226. IEEE (2008)

    Google Scholar 

  49. Wu, Y., AbdAlmageed, W., Natarajan, P.: Mantra-net: manipulation tracing network for detection and localization of image forgeries with anomalous features. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9543–9552 (2019)

    Google Scholar 

  50. Xu, R., Li, W., Li, K., Zhou, X., Qi, H.: Darkte: towards dark traffic engineering in data center networks with ensemble learning. In: 2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS), pp. 1–10. IEEE (2021)

    Google Scholar 

  51. Yan, Z., Li, X., Li, M., Zuo, W., Shan, S.: Shift-Net: image inpainting via deep feature rearrangement. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_1

    Chapter  Google Scholar 

  52. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5505–5514 (2018)

    Google Scholar 

  53. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4471–4480 (2019)

    Google Scholar 

  54. Yu, T., et al.: Region normalization for image inpainting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12733–12740 (2020)

    Google Scholar 

  55. Zhang, X., Karaman, S., Chang, S.F.: Detecting and simulating artifacts in gan fake images. In: 2019 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE (2019)

    Google Scholar 

  56. Zhang, Z., Qian, Y., Zhao, Y., Zhu, L., Wang, J.: Noise and edge based dual branch image manipulation detection. arXiv preprint arXiv:2207.00724 (2022)

  57. Zheng, J., Du, Z., Zha, Z., Yang, Z., Gao, X., Chen, G.: Learning to configure converters in hybrid switching data center networks. IEEE/ACM Trans. Netw. (2023)

    Google Scholar 

  58. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2017)

    Article  Google Scholar 

  59. Zhou, P., Han, X., Morariu, V.I., Davis, L.S.: Learning rich features for image manipulation detection. In: Proceedings of the IEEE Conference on computer vision and Pattern Recognition, pp. 1053–1061 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinbin Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, D., Tan, E., Li, F., Liu, S., Wang, J., Hu, J. (2024). Image Inpainting Forensics Algorithm Based on Dual-Domain Encoder-Decoder Network. In: Tari, Z., Li, K., Wu, H. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2023. Lecture Notes in Computer Science, vol 14491. Springer, Singapore. https://doi.org/10.1007/978-981-97-0808-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0808-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0807-9

  • Online ISBN: 978-981-97-0808-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics