Nothing Special   »   [go: up one dir, main page]

Skip to main content

Ground Plane Synchronization in VR Applications Using Indoor Robots for Enhancing Immersion

  • Conference paper
  • First Online:
Proceedings of the 5th International Conference on Data Science, Machine Learning and Applications; Volume 1 (ICDSMLA 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1273))

  • 215 Accesses

Abstract

Many techniques have been developed to improve locomotion while using VR applications. Although VR platforms or large open spaces allow natural locomotion, they are not feasible for all users. As a result, many users are confined to small workspaces which ensure their safety but severely affect immersion. In most cases, the VR application need not be aware of the spatial layout of the user’s environment. This results in a workspace which does not take full advantage of the user’s environment where, every time the user steps out of bounds in either the real world or the virtual world, their immersion with the virtual world detaches. Our work explores the possibility of synchronizing the ground plane of the virtual world to the ground plane of the real world using 2D mapping in an effort to create custom workspaces which ultimately enhances immersion by providing the user with freedom of natural movement without compromising their safety. We propose a pipeline that involves the use of indoor robots which allows VR developers to customize their applications according to the end user’s environment thereby solving the restricted workspace problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Björnfot P., Kaptelinin V.: Probing the design space of a telepresence robot gesture arm with low fidelity prototypes. In: ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 352–360 (2017). https://doi.org/10.1145/2909824.3020223

  2. Harikrishnan, N., Soni, S.N., Alex, A.N., Menon, V., Nair, V.C.: Virtual interactive reality telepresence robot. In: ICSE 2021 International Conference on Systems Energy and Environment (2021)

    Google Scholar 

  3. Young, J., Langlotz, T., Cook, M., Mills, S., Regenbrecht, H.: Immersive telepresence and remote collaboration using mobile and wearable devices. IEEE Trans. Visual Comput. Graph (2019). https://doi.org/10.1109/TVCG.2019.2898737

    Article  Google Scholar 

  4. Lee, Y., Lim, H., Kim, Y., Cha, Y.: Thermal feedback system from robot hand for telepresence. IEEE Access (2020). https://doi.org/10.1109/ACCESS.2020.3047036

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li, W., Xiong, R.: Dynamical obstacle avoidance of task constrained mobile manipulation using model predictive control. IEEE Access 7 (2019). https://doi.org/10.1109/ACCESS.2019.2925428

  6. Zhu, K., Zhang, T.: Deep reinforcement learning based mobile robot navigation: a review. Tsinghua Science and Technology (2021). https://doi.org/10.26599/TST.2021.9010012

  7. Zhang, K., Cao, J., Zhang, Y.: Adaptive digital twin and multiagent deep reinforcement learning for vehicular edge computing and networks. IEEE Trans. Industr. Inf.Industr. Inf. (2022). https://doi.org/10.1109/TII.2021.3088407

    Article  Google Scholar 

  8. Xie, G., Yang, K., Cheng, X., Li, R., Shiyan, H.: Digital twinning based adaptive development environment for automotive cyber-physical systems. IEEE Trans. Industr. Inf.Industr. Inf. (2022). https://doi.org/10.1109/TII.2021.3064364

    Article  Google Scholar 

  9. Chang, Y., Ebadi, K., Denniston, C.E., Ginting, M.F., Rosinol, A., Rein A.: LAMP 2.0: a robust multi-robot SLAM system for operation in challenging large-scale underground environments. In: IEEE Robotics and Automation Letters (2022). https://doi.org/10.1109/LRA.2022.3191204

  10. Zhou, H., Yao, Z., Zhang, Z., Liu, P., Mingquan, L.: An Online multi-robot SLAM system based on Lidar/UWB fusion. IEEE Sens. J. (2022). https://doi.org/10.1109/JSEN.2021.3136929

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li, F., Chen, W., Xu, W., Huang, L., Li, D., Cai, S., Yang, M., Xi, X.: A mobile robot visual SLAM system with enhanced semantics segmentation. IEEE Access. https://doi.org/10.1109/ACCESS.2020.2970238

  12. Xie, Y., et al.: RDC-SLAM: a real-time distributed cooperative slam system based on 3D LiDAR. IEEE Trans. Intell. Transp. Syst.Intell. Transp. Syst. (2022). https://doi.org/10.1109/TITS.2021.3132375

    Article  Google Scholar 

  13. Meng, Z., Wang, Z., Han, Z., Ma, Z.: Research on SLAM navigation of wheeled mobile robot based on ROS. In: 2020 5th International Conference on Automation Control and Robotics Engineering (CACRE), pp. 110–116. https://doi.org/10.1109/CACRE50138.2020.9230186

  14. ROS Reality: a virtual reality framework using consumer-grade hardware for ROS enabled robots (2018). In: International Conference on Intelligent Robots and Systems (IROS). https://doi.org/10.1109/IROS.2018.8593513

  15. Xue Er (Shamaine), C., Qiao, Y., Kuts, V.: Teleoperation of the industrial robot: augmented reality application. In: Proceedings of the 13th ACM Multimedia Systems Conference, pp. 299–303 (2022). https://doi.org/10.1145/3524273.3532901

  16. Roldán, J.J., PeñaTapia, E., GarzónRamos, D., de León, J., Garzón, M., del Cerro, J., Barrientos, A.: Multi-robot systems, virtual reality and ROS: developing a new generation of operator interfaces In: Chapter Part of the Studies in Computational Intelligence book series (SCI, Vol. 778) (2019). https://doi.org/10.1007/978-3-319-91590-62

  17. Suresh, A., Gaba, D., Bhambri, S., Laha, D.: Intelligent multi-fingered dexterous hand using virtual reality (VR) and robot operating system (ROS) (2019). https://doi.org/10.1007/978-3-319-78452-637

  18. Vunder, V., Valner, R., McMahon, C., Kruusamäe, K., Pryor, M.: Improved situational awareness in ROS using panospheric vision and virtual reality (2018). https://doi.org/10.1109/HSI.2018.8431062

  19. Whitney, D., Rosen, E., Ullman, D., Phillips, E., https://doi.org/10.1109/IROS.2018.8593513

  20. Mathis, F., Vaniea, K., Khamis, M.: Observing virtual avatars: the impact of avatars’ fidelity on identifying interactions. In: Proceedings of the 24th International Conference on Academic Mindtrek (2021)

    Google Scholar 

  21. Ingale, A.K., Divya Udayan, J., Patil, S.P.: Lect. Notes Netw. Syst. 517 543–551 (2023). https://doi.org/10.1007/978-981-19-5224-1_55

  22. Ingale, A.K., Leema, A.A., Kim, H. et al.: Automatic 3D facial landmark-based deformation transfer on facial variants for blendshape generation. Arab J. Sci. Eng. 48, 10109–10123 (2023). https://doi.org/10.1007/s13369-022-07403-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udayan J. Divya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Divya, U.J., Hrishikesh, P., Sylesh, N., Menath, M.M., Yadukrishnan (2025). Ground Plane Synchronization in VR Applications Using Indoor Robots for Enhancing Immersion. In: Kumar, A., Gunjan, V.K., Senatore, S., Hu, YC. (eds) Proceedings of the 5th International Conference on Data Science, Machine Learning and Applications; Volume 1. ICDSMLA 2023. Lecture Notes in Electrical Engineering, vol 1273. Springer, Singapore. https://doi.org/10.1007/978-981-97-8031-0_80

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8031-0_80

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8030-3

  • Online ISBN: 978-981-97-8031-0

  • eBook Packages: Artificial Intelligence (R0)

Publish with us

Policies and ethics