Abstract
This paper evaluates the performance of various methods to constant creation in Grammatical Evolution (GE), and validates the results against those from Genetic Programming (GP). Constant creation in GE is an important issue due to the disruptive nature of ripple crossover, which can radically remap multiple terminals in an individual, and we investigate if more compact methods, which are more similar to the GP style of constant creation (Ephemeral Random Constants (ERCs), perform better.
The results are surprising. The GE methods all perform significantly better than GP on unseen test data, and we demonstrate that the standard GE approach of digit concatenation does not produce individuals that are any larger than those from methods which are designed to use less genetic material.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mitchell, T.M.: Machine learning. McGraw Hill, New York (1996)
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)
Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003)
Topchy, A., Punch, W.F.: Faster genetic programming based on local gradient search of numeric leaf values. In: Spector, et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), July 7-11, pp. 155–162. Morgan Kaufmann, San Francisco (2001)
McKay, B., Willis, M., Searson, D., Montague, G.: Non-linear continuum regression using genetic programming. In: Banzhaf, et al. (eds.) Proceedings of GECCO 1999, Orlando, Florida, USA, July 13-17, vol. 2, pp. 1106–1111. Morgan Kaufmann (1999)
Ryan, C., Keijzer, M.: An analysis of diversity of constants of genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 404–413. Springer, Heidelberg (2003)
Evett, M., Fernandez, T.: Numeric mutation improves the discovery of numeric constants in genetic programming. In: Koza, et al. (eds.) Genetic Programming 1998: Proceedings of the Third Annual Conference, University of Wisconsin, Madison, Wisconsin, July 22-25, pp. 66–71. Morgan Kaufmann (1998)
O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in a Arbitrary Language. Genetic programming, vol. 4. Kluwer Academic Publishers (2003)
Byrne, J., O’Neill, M., Hemberg, E., Brabazon, A.: Analysis of constant creation techniques on the binomial-3 problem with grammatical evolution. In: Tyrrell, et al. (eds.) 2009 IEEE Congress on Evolutionary Computation, Trondheim, Norway, May 18-21, pp. 568–573. IEEE Computational Intelligence Society, IEEE Press (2009)
O’Neill, M., Ryan, C., Keijzer, M., Cattolico, M.: Crossover in grammatical evolution. Genetic Programming and Evolvable Machines 4(1), 67–93 (2003)
Dempsey, I., O’Neill, M., Brabazon, A.: Constant creation in grammatical evolution. International Journal of Innovative Comput. and Applic. 1(1), 23–38 (2007)
Augusto, D.A., Barbosa, H.J.C., Barreto, A.M.S., Bernardino, H.S.: Evolving numerical constants in grammatical evolution with the ephemeral constant method. In: Antunes, L., Pinto, H.S. (eds.) EPIA 2011. LNCS, vol. 7026, pp. 110–124. Springer, Heidelberg (2011)
Augusto, D.A., Barbosa, H.J.C., Barreto, A.M.S., Bernardino, H.S.: A new approach for generating numerical constants in grammatical evolution. In: Krasnogor, et al. (eds.) GECCO 2011: Proceedings of the 13th Annual Conference Companion on GECCO, Dublin, Ireland, July 12-16, pp. 193–194. ACM (2011)
Daida, J.M., Bertram, R.R., Stanhope, S.A., Khoo, J.C., Chaudhary, S.A., Chaudhri, O.A., Polito II, J.A.: What makes a problem GP-hard? Analysis of a tunably difficult problem in genetic programming. Genetic Programming and Evolvable Machines 2(2), 165–191 (2001)
Nicolau, M., Slattery, D.: libGE - Grammatical Evolution Library (2006)
Ryan, C., Azad, R.M.A.: Sensible initialisation in grammatical evolution. In: Barry, A.M. (ed.) GECCO 2003: Proceedings of the Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference, Chigaco, pp. 142–145. AAAI (July 2003)
Vladislavleva, E.J., Smits, G.F., den Hertog, D.: Order of nonlinearity as a complexity measure for models generated by symbolic regression via pareto genetic programming. IEEE Trans. on Evolutionary Computation 13(2), 333–349 (2009)
Keijzer, M., Babovic, V.: Genetic programming, ensemble methods and the bias/variance tradeoff - introductory investigations. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 76–90. Springer, Heidelberg (2000)
Poli, R.: A simple but theoretically-motivated method to control bloat in genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 204–217. Springer, Heidelberg (2003)
Costelloe, D., Ryan, C.: On improving generalisation in genetic programming. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 61–72. Springer, Heidelberg (2009)
Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming – An Introduction; On the Automatic Evolution of Computer Programs and its Applications. Morgan Kaufmann, San Francisco (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Azad, R.M.A., Ryan, C. (2014). The Best Things Don’t Always Come in Small Packages: Constant Creation in Grammatical Evolution. In: Nicolau, M., et al. Genetic Programming. EuroGP 2014. Lecture Notes in Computer Science, vol 8599. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44303-3_16
Download citation
DOI: https://doi.org/10.1007/978-3-662-44303-3_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44302-6
Online ISBN: 978-3-662-44303-3
eBook Packages: Computer ScienceComputer Science (R0)