Abstract
One of the key challenges facing wireless sensor networks (WSNs) is extending network lifetime due to sensor nodes having limited power supplies. Extending WSN lifetime is complicated because nodes often experience differential power consumption. For example, nodes closer to the sink in a given routing topology transmit more data and thus consume power more rapidly than nodes farther from the sink. Inspired by the huddling behavior of emperor penguins where the penguins take turns on the cold extremities of a penguin “huddle”, we propose mobile node rotation, a new method for using low-cost mobile sensor nodes to address differential power consumption and extend WSN lifetime. Specifically, we propose to rotate the nodes through the high power consumption locations. We propose efficient algorithms for single and multiple rounds of rotations. Our extensive simulations show that mobile node rotation can extend WSN topology lifetime by more than eight times on average in a which is significantly better than existing alternatives.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Szewczyk, R., Mainwaring, A., Polastre, J., Anderson, J., Culler, D.: An analysis of a large scale habitat monitoring application. In: SenSys, pp. 214–226 (2004)
Suzuki, M., Saruwatari, S., Kurata, N., Morikawa, H.: A high-density earthquake monitoring system using wireless sensor networks. In: Proceedings of the 5th International Conference on Embedded Networked Sensor Systems, ser. SenSys 2007, pp. 373–374 (2007)
Filipponi, L., Santini, S., Vitaletti, A.: Data Collection in Wireless Sensor Networks for Noise Pollution Monitoring. In: Nikoletseas, S.E., Chlebus, B.S., Johnson, D.B., Krishnamachari, B. (eds.) DCOSS 2008. LNCS, vol. 5067, pp. 492–497. Springer, Heidelberg (2008)
Luo, L., Cao, Q., Huang, C., Abdelzaher, T.F., Stankovic, J.A., Ward, M.: Enviromic: Towards cooperative storage and retrieval in audio sensor networks. In: ICDCS, p. 34 (2007)
Somasundara, A.A., Ramamoorthy, A., Srivastava, M.B.: Mobile element scheduling with dynamic deadlines. IEEE Transactions on Mobile Computing 6(4), 395–410 (2007)
Dantu, K., Rahimi, M., Shah, H., Babel, S., Dhariwal, A., Sukhatme, G.S.: Robomote: enabling mobility in sensor networks. In: IPSN, pp. 404–409 (2005)
Kim, J.-H., Kim, D.-H., Kim, Y.-J., Seow, K.-T.: Soccer Robotics. Springer (2004)
Zitterbart, D., Wienecke, B., Butler, J., Fabry, B.: Coordinated movements prevent jamming in an emperor penguin huddle. PLoS one 6(6), e20260 (2011)
Pon, R., Batalin, M., Gordon, J., Kansal, A., Liu, D., Rahimi, M., Shirachi, L., Yu, Y., Hansen, M., Kaiser, W., Srivastava, M., Sukhatme, G., Estrin, D.: Networked infomechanical systems: a mobile embedded networked sensor platform. In: Fourth International Symposium on Information Processing in Sensor Networks, IPSN, pp. 376–381 (April 2005)
Luo, J., Hubaux, J.-P.: Joint mobility and routing for lifetime elongation in wireless sensor networks. In: INFOCOM, pp. 1735–1746 (2005)
Gu, Y., Bozdag, D., Ekici, E.: Mobile element based differentiated message delivery in wireless sensor networks. In: WoWMoM, pp. 83–92 (2006)
Kansal, A., Jea, D.D., Estrin, D., Srivastava, M.B.: Controllably mobile infrastructure for low energy embedded networks. IEEE Transactions on Mobile Computing 5(8), 958–973 (2006)
Xing, G., Wang, T., Xie, Z., Jia, W.: Rendezvous planning in mobility-assisted wireless sensor networks. In: RTSS 2007: Proceedings of the 28th IEEE International Real-Time Systems Symposium, pp. 311–320 (2007)
Jea, D., Somasundara, A., Srivastava, M.B.: Multiple Controlled Mobile Elements (Data Mules) for Data Collection in Sensor Networks. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 244–257. Springer, Heidelberg (2005)
Jain, S., Shah, R., Brunette, W., Borriello, G., Roy, S.: Exploiting mobility for energy efficient data collection in wireless sensor networks. MONET 11(3), 327–339 (2006)
Ooi, C.-C., Schindelhauer, C.: Minimal energy path planning for wireless robots. In: ROBOCOMM, p. 2 (2007)
Goldenberg, D.K., Lin, J., Morse, A.S.: Towards mobility as a network control primitive. In: MobiHoc, pp. 163–174 (2004)
Tang, C., McKinley, P.K.: Energy optimization under informed mobility. IEEE Trans. Parallel Distrib. Syst. 17(9), 947–962 (2006)
El-Moukaddem, F., Torng, E., Xing, G., Kulkarni, S.: Mobile relay configuration in data-intensive wireless sensor networks. In: IEEE MASS, pp. 80–89 (2009)
El-Moukaddem, F., Torng, E., Xing, G.: Maximizing data gathering capacity of wireless sensor networks using mobile relays. In: IEEE MASS, pp. 312–321 (2010)
Burkard, R.E.: Selected topics on assignment problems. Discrete Applied Mathematics, 257–302 (2002)
Sha, M., Xing, G., Zhou, G., Liu, S., Wang, X.: C-mac: Model-driven concurrent medium access control for wireless sensor networks. In: INFOCOM, pp. 1845–1853 (2009)
Handy, M., Haase, M., Timmermann, D.: Low energy adaptive clustering hierarchy with deterministic cluster-head selection. In: International Workshop on Mobile and Wireless Communications Network, pp. 368–372 (2002)
Liu, Y., Luo, Z., Xu, K., Chen, L.: A reliable clustering algorithm base on leach protocol in wireless mobile sensor networks. In: International Conference on Mechanical and Electrical Technology (ICMET), pp. 692–696 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
El-Moukaddem, F., Torng, E., Xing, G. (2012). Maximizing Network Topology Lifetime Using Mobile Node Rotation. In: Wang, X., Zheng, R., Jing, T., Xing, K. (eds) Wireless Algorithms, Systems, and Applications. WASA 2012. Lecture Notes in Computer Science, vol 7405. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31869-6_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-31869-6_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31868-9
Online ISBN: 978-3-642-31869-6
eBook Packages: Computer ScienceComputer Science (R0)