Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Good, the Bad, and the Odd: Cycles in Answer-Set Programs

  • Conference paper
New Directions in Logic, Language and Computation (ESSLLI 2010, ESSLLI 2011)

Abstract

Backdoors of answer-set programs are sets of atoms that represent “clever reasoning shortcuts” through the search space. Assignments to backdoor atoms reduce the given program to several programs that belong to a tractable target class. Previous research has considered target classes based on notions of acyclicity where various types of cycles (good and bad cycles) are excluded from graph representations of programs. We generalize the target classes by taking the parity of the number of negative edges on bad cycles into account and consider backdoors for such classes. We establish new hardness results and non-uniform polynomial-time tractability relative to directed or undirected cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In: Foundations of Deductive Databases and Logic Programming, pp. 89–148. Morgan Kaufmann (1988)

    Google Scholar 

  2. Arikati, S.R., Peled, U.N.: A polynomial algorithm for the parity path problem on perfectly orientable graphs. Discrete Applied Mathematics 65(1-3), 5–20 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer (1999)

    Google Scholar 

  4. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: Propositional case. Annals of Mathematics and AI 15(3-4), 289–323 (1995)

    MathSciNet  MATH  Google Scholar 

  5. Fichte, J.K., Szeider, S.: Backdoors to tractable answer-set programming. Extended and updated version of a paper that appeared in IJCAI 2011, CoRR abs/1104.2788 (2012)

    Google Scholar 

  6. Gaspers, S., Szeider, S.: Backdoors to Satisfaction. CoRR abs/1110.6387 (2011)

    Google Scholar 

  7. Van Gelder, A.: The alternating fixpoint of logic programs with negation. In: Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 1–10. ACM (1989)

    Google Scholar 

  8. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. Journal of the ACM 38(3), 620–650 (1991)

    MATH  Google Scholar 

  9. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the Fifth International Conference and Symposium on Logic Programming (ICLP/SLP), vol. 2, pp. 1070–1080. MIT Press (1988)

    Google Scholar 

  10. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9(3/4), 365–386 (1991)

    Article  Google Scholar 

  11. Gottlob, G., Scarcello, F., Sideri, M.: Fixed-parameter complexity in AI and nonmonotonic reasoning. AI 138(1-2), 55–86 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Lapaugh, A.S., Papadimitriou, C.H.: The even-path problem for graphs and digraphs. Networks 14(4), 507–513 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin, F., Zhao, X.: On odd and even cycles in normal logic programs. In: Proceedings of the Nineteenth National Conference on AI (AAAI), pp. 80–85. AAAI Press (2004)

    Google Scholar 

  14. Marek, V.W., Truszczynski, M.: Stable models and an alternative logic programming paradigm: a 25-Year Perspective. In: The Logic Programming Paradigm, pp. 375–398 (1999)

    Google Scholar 

  15. Montalva, M., Aracena, J., Gajardo, A.: On the complexity of feedback set problems in signed digraphs. Electronic Notes in Discrete Mathematics 30, 249–254 (2008)

    Article  MathSciNet  Google Scholar 

  16. Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Annals of Mathematics and AI 25(3), 241–273 (1999)

    MATH  Google Scholar 

  17. Robertson, N., Seymour, P., Thomas, R.: Permanents, Pfaffian orientations, and even directed circuits. Annals of Mathematics 150(3), 929–975 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schaub, T.: Collection on answer set programming (ASP) and more. Tech. rep., University of Potsdam (2008), http://www.cs.uni-potsdam.de/~torsten/asp

  19. Vazirani, V., Yannakakis, M.: Pfaffian Orientations, 0/1 Permanents, and Even Cycles in Directed Graphs. In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 667–681. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  20. Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In: Proceedings of the Eighteenth International Joint Conference on AI (IJCAI), pp. 1173–1178. Morgan Kaufmann (2003)

    Google Scholar 

  21. Williams, R., Gomes, C., Selman, B.: On the connections between backdoors, restarts, and heavy-tailedness in combinatorial search. In: Proceedings of the Sixth International Conference on Theory and Applications of Satisfiability Testing (SAT), pp. 222–230. Morgan Kaufmann (2003)

    Google Scholar 

  22. Yuster, R., Zwick, U.: Finding Even Cycles Even Faster. In: Shamir, E., Abiteboul, S. (eds.) ICALP 1994. LNCS, vol. 820, pp. 532–543. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  23. Zhao, J.: A Study of Answer Set Programming. MPhil thesis, The Hong Kong University of Science and Technology, Dept. of Computer Science (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fichte, J.K. (2012). The Good, the Bad, and the Odd: Cycles in Answer-Set Programs. In: Lassiter, D., Slavkovik, M. (eds) New Directions in Logic, Language and Computation. ESSLLI ESSLLI 2010 2011. Lecture Notes in Computer Science, vol 7415. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31467-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31467-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31466-7

  • Online ISBN: 978-3-642-31467-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics