Nothing Special   »   [go: up one dir, main page]

Skip to main content

State Complexity of k-Union and k-Intersection for Prefix-Free Regular Languages

  • Conference paper
Descriptional Complexity of Formal Systems (DCFS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8031))

Included in the following conference series:

Abstract

We investigate the state complexity of multiple unions and of multiple intersections for prefix-free regular languages. Prefix-free deterministic finite automata have their own unique structural properties that are crucial for obtaining state complexity upper bounds that are improved from those for general regular languages. We present a tight lower bound construction for k-union using an alphabet of size k + 1 and for k-intersection using a binary alphabet. We prove that the state complexity upper bound for k-union cannot be reached by languages over an alphabet with less than k symbols. We also give a lower bound construction for k-union using a binary alphabet that is within a constant factor of the upper bound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Câmpeanu, C., Culik II, K., Salomaa, K., Yu, S.: State complexity of basic operations on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214, pp. 60–70. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Câmpeanu, C., Salomaa, K., Yu, S.: Tight lower bound for the state complexity of shuffle of regular languages. Journal of Automata, Languages and Combinatorics 7(3), 303–310 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Cmorik, R., Jirásková, G.: Basic operations on binary suffix-free languages. In: Kotásek, Z., Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D. (eds.) MEMICS 2011. LNCS, vol. 7119, pp. 94–102. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Domaratzki, M.: State complexity of proportional removals. Journal of Automata, Languages and Combinatorics 7(4), 455–468 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Domaratzki, M., Okhotin, A.: State complexity of power. Theoretical Computer Science 410(24-25), 2377–2392 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Domaratzki, M., Salomaa, K.: State complexity of shuffle on trajectories. Journal of Automata, Languages and Combinatorics 9(2-3), 217–232 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Ésik, Z., Gao, Y., Liu, G., Yu, S.: Estimation of state complexity of combined operations. Theoretical Computer Science 410(35), 3272–3280 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gao, Y., Kari, L.: State complexity of star and square of union of k regular languages. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386, pp. 155–168. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Gao, Y., Kari, L., Yu, S.: State complexity of union and intersection of square and reversal on k regular languages. Theoretical Computer Science 454, 164–171 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao, Y., Salomaa, K., Yu, S.: The state complexity of two combined operations: Star of catenation and star of reversal. Fundamenta Informaticae 83(1-2), 75–89 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Han, Y.-S., Salomaa, K.: State complexity of union and intersection of finite languages. International Journal of Foundations of Computer Science 19(3), 581–595 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Han, Y.-S., Salomaa, K.: State complexity of basic operations on suffix-free regular languages. Theoretical Computer Science 410(27-29), 2537–2548 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Han, Y.-S., Salomaa, K., Wood, D.: Operational state complexity of prefix-free regular languages. In: Automata, Formal Languages, and Related Topics - Dedicated to Ferenc Gécseg on the Occasion of his 70th Birthday, pp. 99–115. Institute of Informatics, University of Szeged, Hungary (2009)

    Google Scholar 

  14. Hricko, M., Jirásková, G., Szabari, A.: Union and intersection of regular languages and descriptional complexity. In: Proceedings of DCFS 2005, pp. 170–181. Università degli Studi di Milano, Milan (2005)

    Google Scholar 

  15. Jirásek, J., Jirásková, G., Szabari, A.: State complexity of concatenation and complementation. International Journal of Foundations of Computer Science 16(3), 511–529 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jirásková, G., Masopust, T.: Complexity in union-free regular languages. International Journal of Foundations of Computer Science 22(7), 1639–1653 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jirásková, G., Olejár, P.: State complexity of intersection and union of suffix-free languages and descriptional complexity. In: Proceedings of NCMA 2009, pp. 151–166. Austrian Computer Society (2009)

    Google Scholar 

  18. Jirásková, G., Sebej, J.: Reversal of binary regular languages. Theoretical Computer Science 449, 85–92 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Maslov, A.: Estimates of the number of states of finite automata. Soviet Mathematics Doklady 11, 1373–1375 (1970)

    MATH  Google Scholar 

  20. Nicaud, C.: Average state complexity of operations on unary automata. In: Kutyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 231–240. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  21. Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacobsthal’s function. International Journal of Foundations of Computer Science 13(1), 145–159 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rampersad, N.: The state complexity of L 2 and L k. Information Processing Letters 98(6), 231–234 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations. Theoretical Computer Science 383(2-3), 140–152 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular languages. Theoretical Computer Science 320(2-3), 315–329 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Salomaa, K., Yu, S.: On the state complexity of combined operations and their estimation. International Journal of Foundations of Computer Science 18, 683–698 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cambridge University Press, New York (2008)

    Book  Google Scholar 

  27. Wood, D.: Theory of Computation. John Wiley & Sons, Inc., New York (1987)

    MATH  Google Scholar 

  28. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Word, Language, Grammar. Handbook of Formal Languages, vol. 1, pp. 41–110. Springer (1997)

    Google Scholar 

  29. Yu, S.: State complexity of regular languages. Journal of Automata, Languages and Combinatorics 6(2), 221–234 (2001)

    MathSciNet  MATH  Google Scholar 

  30. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theoretical Computer Science 125(2), 315–328 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eom, HS., Han, YS., Salomaa, K. (2013). State Complexity of k-Union and k-Intersection for Prefix-Free Regular Languages. In: Jurgensen, H., Reis, R. (eds) Descriptional Complexity of Formal Systems. DCFS 2013. Lecture Notes in Computer Science, vol 8031. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39310-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39310-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39309-9

  • Online ISBN: 978-3-642-39310-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics