Abstract
Neuronal morphology is significant for understanding structure-function relationships and brain information processing in computational neuroscience. So it is very important to simulate neuronal morphology completely and accurately. In this paper, we present a novel approach for efficient generation of 3D virtual neurons using genetic regulatory network model. This approach describes dendritic geometry and topology by locally inter-correlating morphological variables which can be represented by the dynamics of gene expression. The experimental results show that the generating virtual neurons that are anatomically indistinguishable and accurate from experimentally traced real neurons.
This research is supported by the National Natural Science Foundation of China under Grant No. 61165002, and the Natural Science Foundation of Gansu Province of China under Grant No. 1010RJZA019.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Shepherd, G.M., Mirsky, J.S., Healy, M.D., Singer, M.S., Skoufos, E., Hines, M.S., Nadkarni, P.M., Miller, P.L.: The Human Brain Project: Neuroinformatics tools for integrating, searching and modeling multidisciplinary neuroscience data. Trends in Neuroscience 21(11), 460–468 (1998)
Markram, H.: The Blue Brain Project. Nature Reviews Neuroscience 7(2), 153–160 (2006)
Buckmaster, P.S., Alonso, A., Canfield, D.R., Amaral, D.G.: Dendritic morphology, local circuitry, and intrinsic electrophysiology of principal neurons in the entorhinal cortex of macaque monkeys. Journal of Comparative Neurology 470(3), 317–329 (2004)
Koch, C., Segev, I.: The role of single neurons in information processing. Nature Neuroscience 3(1), 1171–1177 (2000)
Hillman, D.: Neuronal shape parameters and substructures as a basis of neuronal form. In: Schmitt, F.O., Worden, F.G. (eds.) The Neurosciences, 4th Study Program, pp. 477–498. MIT Press, Cambridge (1979)
Burke, R., Marks, W., Ulfhake, B.: A parsimonious description of motorneuron dendritc morphology using computer simulation. Journal of Neuroscience 12(6), 2403–2416 (1992)
Ascoli, G.A., Krichmar, J.L.: L-Neuron: A modeling tool for the efficient generation and parsimonious description of dendritic morphology. Neurocomputing 32(33), 1003–1011 (2000)
López-Cruz, P.L., Bielza, C., Larrañaga, P., Benavides-Piccione, R., DeFelipe, J.: Models and simulation of 3D neuronal dendritic trees using bayesian networks. Neuroinformatics 9(4), 347–369 (2011)
Berry, M., Bradley, P.M.: The application of network analysis to the study of branching patterns of large dendritic fields. Brain Research 109(1), 111–132 (1976)
Van Pelt, J., Van Ooyen, A., Uylings, H.B.M.: Modeling dendritic geometry and the development of nerve connections. In: DeSchutter, E., Cannon, R.C. (eds.) Computational Neuroscience: Realistic Modeling for Experimentalist, pp. 179–208. CRC Press, Boca Raton (2001)
Cannon, R., Turner, D., Pyapali, G., Wheal, H.: An online archive of reconstructed hippocampal neurons. Journal of Neuroscience Methods 84(1), 49–54 (1998)
Ascoli, G.A., Donohue, D.E., Halavi, M.: NeuroMorpho.org: A central resource for neuronal morphologies. Journal of Neuroscience 27(35), 9247–9251 (2007)
NeuroMorpho.Org, http://neuromorpho.org/neuroMorpho/index.jsp
Hippocampal Neuronal Morphology, http://neuron.duke.edu/cells/cellArchive.html
Myatt, D.R., Hadlington, T., Ascoli, G.A., Nasuto, S.J.: Neuromantic–from semi-manual to semi-automatic reconstruction of neuron morphology. Frontiers in Neuroinformatics 6(4), 1–14 (2012)
Ascoli, G.A., Krichmar, J.L., Scorcioni, R., Nasuo, S.J., Senft, S.L.: Computer generation and quantitative morphometric analysis of virtual neurons. Anatomy and Embryology 204(4), 283–301 (2001)
Rall, W.: Branching dendritic trees and motoneuron membrane resistivity. Experimental Neurology 1(5), 491–527 (1959)
Ascoli, G.A.: Progress and perspectives in computational neuroanatomy. Anatomical Record 257(6), 195–207 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lin, X., Li, Z. (2013). Generation and Analysis of 3D Virtual Neurons Using Genetic Regulatory Network Model. In: Guo, C., Hou, ZG., Zeng, Z. (eds) Advances in Neural Networks – ISNN 2013. ISNN 2013. Lecture Notes in Computer Science, vol 7951. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39065-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-39065-4_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39064-7
Online ISBN: 978-3-642-39065-4
eBook Packages: Computer ScienceComputer Science (R0)