Nothing Special   »   [go: up one dir, main page]

Skip to main content

Noise Resistant Gradient Calculation and Edge Detection Using Local Binary Patterns

  • Conference paper
Computer Vision - ACCV 2012 Workshops (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7728))

Included in the following conference series:

Abstract

Gradient calculation and edge detection are well-known problems in image processing and the fundament for many approaches for line detection, segmentation, contour extraction, or model fitting. A large variety of algorithms for edge detection already exists but strong image noise is still a challenge. Especially in automatic surveillance and reconnaissance applications with visual-optical, infrared, or SAR imagery, high distance to objects and weak signal-to-noise-ratio are difficult tasks to handle. In this paper, a new approach using Local Binary Patterns (LBPs) is presented, which is a crossover between texture analysis and edge detection. It shows similar results as the Canny edge detector under normal conditions but performs better in presence of noise. This characteristic is evaluated quantitatively with different artificially generated types and levels of noise in synthetic and natural images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Canny, J.: Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 679–698 (1986)

    Article  Google Scholar 

  2. Korn, A.: Toward a Symbolic Representation of Intensity Changes in Images. IEEE Transactions on Pattern Analysis and Machine Intelligence 10, 610–625 (1988)

    Article  Google Scholar 

  3. Kitanovski, V., Taskovski, D., Panovski, L.: Multi-scale Edge Detection Using Undecimated Wavelet Transform. In: Proceedings of the IEEE International Symposium on Signal Processing and Information Technology, ISSPIT (2008)

    Google Scholar 

  4. Agaian, S., Almuntashri, A.: Noise-Resilient Edge Detection Algorithm for Brain MRI Images. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC (2009)

    Google Scholar 

  5. Sun, X., Sun, G.: A New Noise-resistant Algorithm for Edge Detection. In: Proceedings of the Second International Workshop on Education Technology and Computer Science, ETCS (2010)

    Google Scholar 

  6. Panetta, K.A., Agaian, S.S., Nercessian, S.C., Almunstashri, A.A.: Shape-dependent canny edge detector. Optical Engineering 50 (2011)

    Google Scholar 

  7. Abdou, I.E., Pratt, W.K.: Quantitative design and evaluation of enhancement/thresholding edge detectors. Proceedings of the IEEE 67, 753–763 (1979)

    Article  Google Scholar 

  8. Chen, Y., Das, M.: Robust edge and corner detection using noise identification and adaptive thresholding techniques. In: Proceedings of the IEEE International Conference on Electro/Information Technology (2007)

    Google Scholar 

  9. Hou, Z.J., Wei, G.W.: A new approach to edge detection. Pattern Recognition 35, 1559–1570 (2002)

    Article  MATH  Google Scholar 

  10. Chang, C.Y.: Contextual-based Hopfield neural network for medical image edge detection. Optical Engineering 45 (2006)

    Google Scholar 

  11. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 971–987 (2002)

    Article  Google Scholar 

  12. Guo, Z., Zhang, L., Zhang, D.: A Completed Modeling of Local Binary Pattern Operator for Texture Classification. IEEE Transactions on Image Processing 19, 1657–1663 (2010)

    Article  MathSciNet  Google Scholar 

  13. An, K.H., Park, S.H., Chung, Y.S., Moon, K.Y., Chung, M.J.: Learning discriminative multi-scale and multi-position LBP features for face detection based on Ada-LDA. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1117–1122 (2009)

    Google Scholar 

  14. Heikkilä, M., Pietikäinen, M.: A Texture-Based Method for Modeling the Background and Detecting Moving Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 657–662 (2006)

    Article  Google Scholar 

  15. Teutsch, M., Saur, G.: Segmentation and Classification of Man-Made Maritime Objects in TerraSAR-X Images. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS (2011)

    Google Scholar 

  16. Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of Interest Regions with Local Binary Patterns. Pattern Recognition 42, 425–436 (2009)

    Article  MATH  Google Scholar 

  17. Mäenpää, T.: The Local Binary Pattern Approach to Texture Analysis - Extensions and Applications. Dissertation, University of Oulu, Finland (2003)

    Google Scholar 

  18. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13, 600–612 (2004)

    Article  Google Scholar 

  19. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Teutsch, M., Beyerer, J. (2013). Noise Resistant Gradient Calculation and Edge Detection Using Local Binary Patterns. In: Park, JI., Kim, J. (eds) Computer Vision - ACCV 2012 Workshops. ACCV 2012. Lecture Notes in Computer Science, vol 7728. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37410-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37410-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37409-8

  • Online ISBN: 978-3-642-37410-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics