Abstract
In INSCRYPT 2008, Ruj and Roy proposed deterministic key predistribution schemes using codes. Particularly, they used Reed Solomon codes to present key predistribution schemes. They calculate the connectiviey and resiliency of the network when the schemes are based on Reed Solomon codes. However, the connectivity and resiliency of the network for the schemes using other codes haven’t been calculated so far. In the present paper, we will determine the key parameters of predistribution schemes via linear codes in wireless sensor networks. We calculate the connective probability, the probability fail(1) and the upper bound of the fraction of links broken when s nodes are compromised. We use the theory of matroid. We find that it is very surprising that these parameters can be calculated by making use of the chromatic polynomial of the matroid associated to the codes used in the resulting schemes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barg, A.: On some polynomials related to weight enumerators of linear codes. SIAM J. Discrete Math. 15, 155–164 (2002)
Blackburn, S.R., Etzion, T., Martin, K.M., Paterson, M.B.: Efficient key predistribution for grid-based wireless sensor networks. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 54–69. Springer, Heidelberg (2008)
Britz, T.: MacWilliams identities and matroid polynomials. Electron. J. Combin. 19, Research Paper 19, 16 (2002)
Cameron, P.J.: Cycle index, weight enumerator, and Tutte polynomial. Electron. J. Combin. 9, Note 2, 10 (2002)
Çamtepe, S.A., Yener, B.: Combinatorial design of key distribution mechanisms for wireless sensor networks. In: Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva, R. (eds.) ESORICS 2004. LNCS, vol. 3193, pp. 293–308. Springer, Heidelberg (2004)
Chakrabarti, D., Maitra, S., Roy, B.: A key pre-distribution scheme for wireless sensor networks: merging blocks in combinatorial design. Int. J. Inf. Security 5, 105–114 (2006)
Chan, H., Perrig, A., Song, D.: Random key predistribution schemes for sensor networks. In: IEEE Symposium on Research in Security and Privacy, Washington DC, pp. 197–213 (2003)
Dong, J., Pei, D., Wang, X.: A key predistribution scheme based on 3-designs. In: Pei, D., Yung, M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 81–92. Springer, Heidelberg (2008)
Dong, J., Pei, D., Wang, X.: A class of key predistribution schemes based on orthogonal arrays. JCST 23(5), 825–831 (2008)
Du, W., Deng, J., Han, Y.S., et al.: A pairwise key predistribution scheme for wireless sensors. In: Proceeding of the 10th ACM Conference on Computer and Communications Security (CCS), Washington DC, pp. 42–51 (2003)
Eschenauer, L., Gligor, V.B.: A key-management scheme for distributed sensor networks. In: Proceedings of the 9th ACM Conference on Computer and Communications Security, Washington, DC, USA, pp. 41–47 (2002)
Greene, C.: Weight enumeration and the geometry of linear codes. Studies in Appl. Math. 55, 119–128 (1976)
Lee, J., Stinson, D.R.: On the construction of practical key predistribution schemes for distributed sensor networks using combinatorial designs. ACM Trans. Inf. Syst. Secur. 11(2) (2008)
Lee, J., Stinson, D.R.: A combinatorial approach to key predistribution for distributed sensor networks. In: IEEE Wireless Communications and Networking Conference, WCNC 2005, New Orleans, LA, USA, pp. 1200–1205 (2005)
Lee, J., Stinson, D.R.: Deterministic key predistribution schemes for distributed sensor networks. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 294–307. Springer, Heidelberg (2004)
Liu, D., Ning, P.: Establishing pairwise keys in distributed sensor networks. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM Conference on Computer and Communications Security, pp. 52–61. ACM, New York (2003)
Martin, K.M.: On the Applicability of Combinatorial Designs to key predistribution for wireless sensor networks. In: Chee, Y.M., Li, C., Ling, S., Wang, H., Xing, C. (eds.) IWCC 2009. LNCS, vol. 5557, pp. 124–145. Springer, Heidelberg (2009)
Oxley, J.G.: Matroid Theory. Oxford University Press, Oxford (1992)
Ruj, S., Roy, B.: Key predistribution schemes using codes in wireless sensor networks. In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt 2008. LNCS, vol. 5487, pp. 275–288. Springer, Heidelberg (2009)
Ruj, S., Roy, B.: Key establishment algorithms for some deterministic key predistribution schemes. In: Rodrguez, A., Yage, M., Fernndez-Medina, E. (eds.) Workshop on Security In Information Systems, INSTICC (2008)
Ruj, S., Roy, B.: Key predistribution using partially balanced designs in wireless sensor networks. In: Stojmenovic, I., Thulasiram, R.K., Yang, L.T., Jia, W., Guo, M., de Mello, R.F. (eds.) ISPA 2007. LNCS, vol. 4742, pp. 431–445. Springer, Heidelberg (2007)
Pei, D.Y., Dong, J.W., Rong, C.M.: A novel key pre-distribution scheme for wireless distributed sensor networks. Sci. China Inf. Sci. 53, 288–298 (2010)
Wei, R., Wu, J.: Product construction of key distribution schemes for sensor networks. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 280–293. Springer, Heidelberg (2004)
Welsh, D.J.A.: Matroid Theory. Academic Press, London (1976)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, Q., Pei, D., Dong, J. (2011). Determining Parameters of Key Predistribution Schemes via Linear Codes in Wireless Sensor Networks. In: Lai, X., Yung, M., Lin, D. (eds) Information Security and Cryptology. Inscrypt 2010. Lecture Notes in Computer Science, vol 6584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21518-6_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-21518-6_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21517-9
Online ISBN: 978-3-642-21518-6
eBook Packages: Computer ScienceComputer Science (R0)