Abstract
Electron tomography (ET) is an emerging technology for the three dimensional imaging of cellular ultrastructure. In combination with other techniques, it can provide three dimensional reconstructions of protein assemblies, correlate 3D structures with functional investigations at the light microscope level and provide structural information which extends the findings of genomics and molecular biology.
Realistic physical details are essential for the task of modeling over many spatial scales. While the electron microscope resolution can be as low as a fraction of a nm, a typical 3D reconstruction may just cover 1/1015 of the volume of an optical microscope reconstruction. In order to bridge the gap between those two approaches, the available spatial range of an ET reconstruction has been expanded by various techniques. Large sensor arrays and wide-field camera assemblies have increased the field dimensions by a factor of ten over the past decade, and new techniques for serial tomography and montaging make possible the assembly of many three-dimensional reconstructions.
The number of tomographic volumes necessary to incorporate an average cell down to the protein assembly level is of the order 104, and given the imaging and algorithm requirements, the computational problem lays well in the exascale range. Tomographic reconstruction can be made parallel to a very high degree, and their associated algorithms can be mapped to the simplified processors comprising, for example, a graphics processor unit. Programming this on a GPU board yields a large speedup, but we expect that many more orders of magnitude improvement in computational capabilities will still be required in the coming decade. Exascale computing will raise a new set of problems, associated with component energy requirements (cost per operation and costs of data transfer) and heat dissipation issues. As energy per operation is driven down, reliability decreases, which in turn raises difficult problems in validation of computer models (is the algorithmic approach faithful to physical reality), and verification of codes (is the computation reliably correct and replicable). Leaving aside the hardware issues, many of these problems will require new mathematical and algorithmic approaches, including, potentially, a re-evaluation of the Turing model of computation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amat, F., Moussavi, F., Comolli, L.R., Elidan, G., Downing, K.H., Horowitz, M.: Markov random field based automatic image alignment for electron tomography. Journal of Structural Biology 131, 260–275 (2008)
Beylkin, G.: The inversion problem and applications of the generalized radon transform. Communications on Pure and Applied Mathematics 37(5), 579–599 (1984)
Brand, M., Kang, K., Cooper, D.B.: Algebraic solution for the visual hull. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 1, pp. I–30–I–35 (2004)
Cao, M., Zhang, H.B., Lu, Y., Nishi, R., Takaoka, A.: Formation and reduction of streak artefacts in electron tomography. Journal of Microscopy 239(1), 66–71 (2010)
Cardone, G., Grünewald, K., Steven, A.C.: A resolution criterion for electron tomography based on cross-validation. Journal of Structural Biology 151(2), 117–129 (2005) ISSN 1047-8477
De Knock, B., De Schepper, N., Sommen, F.: Curved radon transforms and factorization of the veronese equations in clifford analysis. Complex Variables and Elliptic Equations 51(5-6), 511–545 (2006)
Denk, W., Horstmann, H.: Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2(11), e329 (2004)
Duistermaat, J.J., Guillemin, V.W., Hörmander, L., Brüning, J.: Mathematics Past and Present: Fourier Integral Operators: Selected Classical Articles. Springer (1994)
Ehrenpreis, L.: The universality of the Radon transform. Clarendon Press, Oxford (2003)
Frank, J.: Electron Tomography, 2nd edn. Plenum Publishing Corporation, New York (2006)
Gaietta, G., Deerinck, T.J., Adams, S.R., Bouwer, J., Tour, O., Laird, D.W., Sosinsky, G.E., Tsien, R.Y., Ellisman, M.H.: Multicolor and electron microscopic imaging of connexin trafficking. Science 296(5567), 503–517 (2002)
Gelfand, I.M., Gindikin, S.G., Graev, M.I.: Selected Topics in Integral Geometry. American Mathematical Society, Providence (2003)
Goldman, R.D., Grin, B., Mendez, M.G., Kuczmarski, E.R.: Intermediate filaments: versatile building blocks of cell structure. Curr. Opin. Cell Biol. 20(1), 28–34 (2008)
Greenleaf, A., Seeger, A.: Oscillatory and fourier integral operators with degenerate canonical relations, pp. 93–141. Publicacions Matematiques (2002)
Guillemin, V.: On some results of gelfand in integral geometry. In: Proc. Symp. Pure Math., vol. 43, pp. 149–155 (1985)
Hawkes, P.W.: Recent advances in electron optics and electron microscopy. Annales de la Foundation Louis de Broglie 29, 837–855 (2004)
Heintzmann, R., Ficz, G.: Breaking the resolution limit in light microscopy. Methods Cell Biol. 81, 561–580 (2007)
Helgason, S.: The Radon transform, 2nd edn. Progress in mathematics, vol. 5. Birkhäuser, Boston (1999)
Heyden, A., Åström, K.: Euclidean reconstruction from almost uncalibrated cameras. In: Proceedings SSAB 1997 Swedish Symposium on Image Analysis, pp. 16–20. Swedish Society for Automated Image Analysis (1997)
Hörmander, L.: The analysis of linear partial differential operators. In: The Analysis of Linear Partial Differential Operators. Springer, New York (1990)
Institute For Computing in Science. In: Park city Workshop (2011), www.icis.anl.gov/programs/
Lawrence, A., Bouwer, J.C., Perkins, G., Ellisman, M.H.: Transform-based backprojection for volume reconstruction of large format electron microscope tilt series. Journal of Structural Biology 154, 144–167 (2006)
Liang, C., Wong, K.-Y.K.: Robust recovery of shapes with unknown topology from the dual space. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(12), 2205–2216 (2007)
Machleidt, T., Robers, M., Hanson, G.T.: Protein labeling with flash and reash. Methods Mol. Biol. 356, 209–220 (2007)
Martone, M.E., Gupta, A., Wong, M., Qian, X., Sosinsky, G., Ludäscher, B., Ellisman, M.H.: A cell-centered database for electron tomographic data. Journal of Structural Biology 138(1-2), 145–155 (2002)
Natterer, F., Wübbeling, F.: Mathematical Methods in Image Reconstruction. SIAM, Philadelphia (2001)
Palamodov, V.P.: Reconstructive integral geometry. Birkhäuser Verlag, Boston (2004)
Palamodov, V.P.: A uniform reconstruction formula in integral geometry. arXiv:1111.6514v1 (2011)
Phan, S., Lawrence, A.: Tomography of large format electron microscope tilt series: Image alignment and volume reconstr uction. In: CISP 2008: Congress on Image and Signal Processing, vol. 2, pp. 176–182 (May 2008)
Phan, S., Lawrence, A., Molina, T., Lanman, J., Berlanga, M., Terada, M., Kulungowski, A., Obayashi, J., Ellisman, M.: Txbr montage reconstruction (submitted, 2012)
Quinto, E.T.: The dependence of the generalized radon transform on defining measures. Transactions of the American Mathematical Society 257(2), 331–346 (1980)
Quinto, E.T.: Topological restrictions on double fibrations and radon transforms. Proceedings of the American Mathematical Society 81(4), 570–574 (1981)
Quinto, E.T.: Radon transforms, differential equations and microlocal analysis. Contemporary Mathematics 278, 57–68 (2001)
Reimer, L., Kohl, H.: Transmission electron microscopy: physics of image formation. Springer (2008)
Shaner, N.C., Steinbach, P.A., Tsien, R.Y.: A guide to choosing fluorescent proteins. Nat Methods 2(12), 905–909 (2005)
Sharafutdinof, V.A.: Ray Transforms on Riemannian Manifolds. Lecture Notes. University of Washington, Seattle (1999)
Wolf, L., Guttmann, M.: Artificial complex cells via the tropical semiring. In: CVPR (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lawrence, A.F., Phan, S., Ellisman, M. (2012). Electron Tomography and Multiscale Biology. In: Agrawal, M., Cooper, S.B., Li, A. (eds) Theory and Applications of Models of Computation. TAMC 2012. Lecture Notes in Computer Science, vol 7287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29952-0_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-29952-0_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29951-3
Online ISBN: 978-3-642-29952-0
eBook Packages: Computer ScienceComputer Science (R0)