Nothing Special   »   [go: up one dir, main page]

Skip to main content

Electron Tomography and Multiscale Biology

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7287))

  • 1139 Accesses

Abstract

Electron tomography (ET) is an emerging technology for the three dimensional imaging of cellular ultrastructure. In combination with other techniques, it can provide three dimensional reconstructions of protein assemblies, correlate 3D structures with functional investigations at the light microscope level and provide structural information which extends the findings of genomics and molecular biology.

Realistic physical details are essential for the task of modeling over many spatial scales. While the electron microscope resolution can be as low as a fraction of a nm, a typical 3D reconstruction may just cover 1/1015 of the volume of an optical microscope reconstruction. In order to bridge the gap between those two approaches, the available spatial range of an ET reconstruction has been expanded by various techniques. Large sensor arrays and wide-field camera assemblies have increased the field dimensions by a factor of ten over the past decade, and new techniques for serial tomography and montaging make possible the assembly of many three-dimensional reconstructions.

The number of tomographic volumes necessary to incorporate an average cell down to the protein assembly level is of the order 104, and given the imaging and algorithm requirements, the computational problem lays well in the exascale range. Tomographic reconstruction can be made parallel to a very high degree, and their associated algorithms can be mapped to the simplified processors comprising, for example, a graphics processor unit. Programming this on a GPU board yields a large speedup, but we expect that many more orders of magnitude improvement in computational capabilities will still be required in the coming decade. Exascale computing will raise a new set of problems, associated with component energy requirements (cost per operation and costs of data transfer) and heat dissipation issues. As energy per operation is driven down, reliability decreases, which in turn raises difficult problems in validation of computer models (is the algorithmic approach faithful to physical reality), and verification of codes (is the computation reliably correct and replicable). Leaving aside the hardware issues, many of these problems will require new mathematical and algorithmic approaches, including, potentially, a re-evaluation of the Turing model of computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Amat, F., Moussavi, F., Comolli, L.R., Elidan, G., Downing, K.H., Horowitz, M.: Markov random field based automatic image alignment for electron tomography. Journal of Structural Biology 131, 260–275 (2008)

    Article  Google Scholar 

  • Beylkin, G.: The inversion problem and applications of the generalized radon transform. Communications on Pure and Applied Mathematics 37(5), 579–599 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Brand, M., Kang, K., Cooper, D.B.: Algebraic solution for the visual hull. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 1, pp. I–30–I–35 (2004)

    Google Scholar 

  • Cao, M., Zhang, H.B., Lu, Y., Nishi, R., Takaoka, A.: Formation and reduction of streak artefacts in electron tomography. Journal of Microscopy 239(1), 66–71 (2010)

    Google Scholar 

  • Cardone, G., Grünewald, K., Steven, A.C.: A resolution criterion for electron tomography based on cross-validation. Journal of Structural Biology 151(2), 117–129 (2005) ISSN 1047-8477

    Article  Google Scholar 

  • De Knock, B., De Schepper, N., Sommen, F.: Curved radon transforms and factorization of the veronese equations in clifford analysis. Complex Variables and Elliptic Equations 51(5-6), 511–545 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Denk, W., Horstmann, H.: Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2(11), e329 (2004)

    Article  Google Scholar 

  • Duistermaat, J.J., Guillemin, V.W., Hörmander, L., Brüning, J.: Mathematics Past and Present: Fourier Integral Operators: Selected Classical Articles. Springer (1994)

    Google Scholar 

  • Ehrenpreis, L.: The universality of the Radon transform. Clarendon Press, Oxford (2003)

    Book  MATH  Google Scholar 

  • Frank, J.: Electron Tomography, 2nd edn. Plenum Publishing Corporation, New York (2006)

    Book  Google Scholar 

  • Gaietta, G., Deerinck, T.J., Adams, S.R., Bouwer, J., Tour, O., Laird, D.W., Sosinsky, G.E., Tsien, R.Y., Ellisman, M.H.: Multicolor and electron microscopic imaging of connexin trafficking. Science 296(5567), 503–517 (2002)

    Article  Google Scholar 

  • Gelfand, I.M., Gindikin, S.G., Graev, M.I.: Selected Topics in Integral Geometry. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  • Goldman, R.D., Grin, B., Mendez, M.G., Kuczmarski, E.R.: Intermediate filaments: versatile building blocks of cell structure. Curr. Opin. Cell Biol. 20(1), 28–34 (2008)

    Article  Google Scholar 

  • Greenleaf, A., Seeger, A.: Oscillatory and fourier integral operators with degenerate canonical relations, pp. 93–141. Publicacions Matematiques (2002)

    Google Scholar 

  • Guillemin, V.: On some results of gelfand in integral geometry. In: Proc. Symp. Pure Math., vol. 43, pp. 149–155 (1985)

    Google Scholar 

  • Hawkes, P.W.: Recent advances in electron optics and electron microscopy. Annales de la Foundation Louis de Broglie 29, 837–855 (2004)

    Google Scholar 

  • Heintzmann, R., Ficz, G.: Breaking the resolution limit in light microscopy. Methods Cell Biol. 81, 561–580 (2007)

    Article  Google Scholar 

  • Helgason, S.: The Radon transform, 2nd edn. Progress in mathematics, vol. 5. Birkhäuser, Boston (1999)

    MATH  Google Scholar 

  • Heyden, A., Åström, K.: Euclidean reconstruction from almost uncalibrated cameras. In: Proceedings SSAB 1997 Swedish Symposium on Image Analysis, pp. 16–20. Swedish Society for Automated Image Analysis (1997)

    Google Scholar 

  • Hörmander, L.: The analysis of linear partial differential operators. In: The Analysis of Linear Partial Differential Operators. Springer, New York (1990)

    Google Scholar 

  • Institute For Computing in Science. In: Park city Workshop (2011), www.icis.anl.gov/programs/

  • Lawrence, A., Bouwer, J.C., Perkins, G., Ellisman, M.H.: Transform-based backprojection for volume reconstruction of large format electron microscope tilt series. Journal of Structural Biology 154, 144–167 (2006)

    Article  Google Scholar 

  • Liang, C., Wong, K.-Y.K.: Robust recovery of shapes with unknown topology from the dual space. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(12), 2205–2216 (2007)

    Article  Google Scholar 

  • Machleidt, T., Robers, M., Hanson, G.T.: Protein labeling with flash and reash. Methods Mol. Biol. 356, 209–220 (2007)

    Google Scholar 

  • Martone, M.E., Gupta, A., Wong, M., Qian, X., Sosinsky, G., Ludäscher, B., Ellisman, M.H.: A cell-centered database for electron tomographic data. Journal of Structural Biology 138(1-2), 145–155 (2002)

    Article  Google Scholar 

  • Natterer, F., Wübbeling, F.: Mathematical Methods in Image Reconstruction. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  • Palamodov, V.P.: Reconstructive integral geometry. Birkhäuser Verlag, Boston (2004)

    Book  MATH  Google Scholar 

  • Palamodov, V.P.: A uniform reconstruction formula in integral geometry. arXiv:1111.6514v1 (2011)

    Google Scholar 

  • Phan, S., Lawrence, A.: Tomography of large format electron microscope tilt series: Image alignment and volume reconstr uction. In: CISP 2008: Congress on Image and Signal Processing, vol. 2, pp. 176–182 (May 2008)

    Google Scholar 

  • Phan, S., Lawrence, A., Molina, T., Lanman, J., Berlanga, M., Terada, M., Kulungowski, A., Obayashi, J., Ellisman, M.: Txbr montage reconstruction (submitted, 2012)

    Google Scholar 

  • Quinto, E.T.: The dependence of the generalized radon transform on defining measures. Transactions of the American Mathematical Society 257(2), 331–346 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Quinto, E.T.: Topological restrictions on double fibrations and radon transforms. Proceedings of the American Mathematical Society 81(4), 570–574 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Quinto, E.T.: Radon transforms, differential equations and microlocal analysis. Contemporary Mathematics 278, 57–68 (2001)

    Article  MathSciNet  Google Scholar 

  • Reimer, L., Kohl, H.: Transmission electron microscopy: physics of image formation. Springer (2008)

    Google Scholar 

  • Shaner, N.C., Steinbach, P.A., Tsien, R.Y.: A guide to choosing fluorescent proteins. Nat Methods 2(12), 905–909 (2005)

    Article  Google Scholar 

  • Sharafutdinof, V.A.: Ray Transforms on Riemannian Manifolds. Lecture Notes. University of Washington, Seattle (1999)

    Google Scholar 

  • Wolf, L., Guttmann, M.: Artificial complex cells via the tropical semiring. In: CVPR (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lawrence, A.F., Phan, S., Ellisman, M. (2012). Electron Tomography and Multiscale Biology. In: Agrawal, M., Cooper, S.B., Li, A. (eds) Theory and Applications of Models of Computation. TAMC 2012. Lecture Notes in Computer Science, vol 7287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29952-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29952-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29951-3

  • Online ISBN: 978-3-642-29952-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics