Nothing Special   »   [go: up one dir, main page]

Skip to main content

Symbolic Execution Enhanced System Testing

  • Conference paper
Verified Software: Theories, Tools, Experiments (VSTTE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7152))

Abstract

We describe a testing technique that uses information computed by symbolic execution of a program unit to guide the generation of inputs to the system containing the unit, in such a way that the unit’s, and hence the system’s, coverage is increased. The symbolic execution computes unit constraints at run-time, along program paths obtained by system simulations. We use machine learning techniques –treatment learning and function fitting– to approximate the system input constraints that will lead to the satisfaction of the unit constraints. Execution of system input predictions either uncovers new code regions in the unit under analysis or provides information that can be used to improve the approximation. We have implemented the technique and we have demonstrated its effectiveness on several examples, including one from the aerospace domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Acevedo, A., Arnold, J., Othon, W., Berndt, J.: ANTARES: Spacecraft simulation for multiple user communities and facilities. In: AIAA 2007–6888 Mod. and Sim. (2007)

    Google Scholar 

  2. Pasareanu, C., Mehlitz, P., Bushnell, D., Gundy-Burlet, K., Lowry, M., Person, S., Pape, M.: Combining unit-level symbolic execution and system-level concrete execution for testing NASA software. In: ISSTA (2008)

    Google Scholar 

  3. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In: FSE (2005)

    Google Scholar 

  4. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing. In: PLDI. ACM (2005)

    Google Scholar 

  5. King, J.C.: Symbolic execution and program testing. CACM (1976)

    Google Scholar 

  6. Menzies, T., Hu, Y.: Data mining for very busy people. IEEE Computer (2003)

    Google Scholar 

  7. Xie, T., Marinov, D., Schulte, W., Notkin, D.: Symstra: A Framework for Generating Object-Oriented Unit Tests using Symbolic Execution. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 365–381. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automatically generating inputs of death. In: ACM CCS (2006)

    Google Scholar 

  9. Elbaum, S., Chin, H.N., Dwyer, M.B., Dokulil, J.: Carving differential unit test cases from system test cases. In: FSE (2006)

    Google Scholar 

  10. Sen, K.: Concolic testing. In: ASE (2007)

    Google Scholar 

  11. Gay, G., Menzies, T., Davies, M., Gundy-Burlet, K.: Automatically finding the control variables for complex system behavior. In: ASE (2010)

    Google Scholar 

  12. Bay, S., Pazzani, M.: Detecting change in categorical data: Mining contrast sets. In: KDDM (1999)

    Google Scholar 

  13. Agrawal, R., Imeilinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: ACM SIGMOD (1993)

    Google Scholar 

  14. Cai, C., Fu, A., Cheng, C., Kwong, W.: Mining association rules with weighted items. In: IDEAS (1998)

    Google Scholar 

  15. Holte, R.C.: Very simple classification rules perform well on most commonly used datasets. Machine Learning 11 (1993)

    Google Scholar 

  16. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence (1997)

    Google Scholar 

  17. Trefethen, L.N., David Bau, I.: Numerical linear algebra. SIAM (1997)

    Google Scholar 

  18. Strang, G.: Linear algebra and its applications, 3rd edn. Thomson Learning (1988)

    Google Scholar 

  19. Burden, R.L., Faires, J.D.: Numerical analysis, 7th edn. Brooks/Cole (2001)

    Google Scholar 

  20. Bartle, R.: The elements of real analysis, 2nd edn. John Wiley & Sons (1976)

    Google Scholar 

  21. Schumaker, L.L.: Spline functions: basic theory. Wiley Interscience (1981)

    Google Scholar 

  22. Cohen, D., Dalal, S., Parelius, J., Patton, G.: The combinatorial design approach to automatic test generation. IEEE Software 13, 83–88 (1996)

    Article  Google Scholar 

  23. Clause, J.A., Li, W., Orso, A.: Dytan: a generic dynamic taint analysis framework. In: ISSTA (2007)

    Google Scholar 

  24. Necula, G.C., Mcpeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language and tools for analysis and transformation of C programs. In: International Conference on Compiler Construction, pp. 213–228 (2002)

    Google Scholar 

  25. Dutertre, B., Moura, L.D.: The YICES SMT solver. Technical report, SRI International (2006)

    Google Scholar 

  26. Finck, R.: USAF stability and control DATCOM. Technical Report AFWAL-TR-83-3048, USAF (1978)

    Google Scholar 

  27. Anderson, J.D.: Fundamentals of Aerodynamics, 3rd edn. Mc-Graw Hill (2001)

    Google Scholar 

  28. Gundy-Burlet, K., Schumann, J., Barrett, T., Menzies, T.: Parametric analysis of a hover test vehicle using advanced test generation and data analysis. In: AIAA Aerospace (2009)

    Google Scholar 

  29. Dunietz, I., Ehrlich, W., Szablak, B., Mallows, C., Iannino, A.: Applying design of experiments to software testing: experience report. In: ICSE, pp. 205–215 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Davies, M., Păsăreanu, C.S., Raman, V. (2012). Symbolic Execution Enhanced System Testing. In: Joshi, R., Müller, P., Podelski, A. (eds) Verified Software: Theories, Tools, Experiments. VSTTE 2012. Lecture Notes in Computer Science, vol 7152. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27705-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27705-4_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27704-7

  • Online ISBN: 978-3-642-27705-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics