Abstract
In this paper we introduce a new representation for shape-based object class detection. This representation is based on very sparse and slightly flexible configurations of oriented edges. An ensemble of such configurations is learnt in a boosting framework. Each edge configuration can capture some local or global shape property of the target class and the representation is thus not limited to representing and detecting visual classes that have distinctive local structures. The representation is also able to handle significant intra-class variation. The representation allows for very efficient detection and can be learnt automatically from weakly labelled training images of the target class. The main drawback of the method is that, since its inductive bias is rather weak, it needs a comparatively large training set. We evaluate on a standard database [1] and when using a slightly extended training set, our method outperforms state of the art [2] on four out of five classes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ferrari, V., Tuytelaars, T., Van Gool, L.: Object detection by contour segment networks. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 14–28. Springer, Heidelberg (2006)
Maji, S., Malik, J.: Object detection using a max-margin. In: Proc. of the IEEE Computer Vision and Pattern Recognition (2009)
Gavrila, D.M.: A bayesian, exemplar-based approach to hierarchical shape matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 29 (2007)
Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 509–522 (2002)
Ferrari, V., Jurie, F., Schmid, C.: Accurate object detection with deformable shape models learnt from images. In: Proc. of the IEEE Computer Vision and Pattern Recognition (2007)
Thuresson, J., Carlsson, S.: Finding object categories in cluttered images using minimal shape prototypes. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 1122–1129. Springer, Heidelberg (2003)
Carlsson, S.: Order structure, correspondence, and shape based categories. In: Forsyth, D., Mundy, J.L., Di Gesú, V., Cipolla, R. (eds.) Shape, Contour, and Grouping 1999. LNCS, vol. 1681, p. 58. Springer, Heidelberg (1999)
Shotton, J., Blake, A., Cipolla, R.: Contour-based learning for object detection. In: Proc. of the International Conference of Computer Vision (2005)
Opelt, A., Pinz, A., Zisserman, A.: A boundary-fragment-model for object detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 575–588. Springer, Heidelberg (2006)
Freund, Y., Schapire, R.E.: A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence 14, 771–780 (1999)
Viola, P.A., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57, 137–154 (2004)
Breu, H., Gil, J., Kirkpatrick, D., Werman, M.: Linear time euclidean distance transform algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence 17, 529–533 (1995)
Fleuret, F., Geman, D.: Coarse-to-fine face detection. International Journal of Computer Vision 4, 85–107 (2001)
Wu, Y.N., Si, Z., Fleming, C., Zhu, S.C.: Deformable template as active basis. In: Proc. of the International Conference on Computer Vision (2007)
Danielsson, O., Carlsson, S., Sullivan, J.: Automatic learning and extraction of multi-local features. In: Proc. of the International Conference on Computer Vision (2009)
Viola, P.A., Jones, M.J.: Fast and robust classification using asymmetric adaboost and a detector cascade. In: Proc. of Neural Information Processing Systems, pp. 1311–1318 (2001)
Fayyad, U.M.: On the Induction of Decision Trees for Multiple Concept Learning. PhD thesis, The University of Michigan (1991)
Ravishankar, S., Jain, A., Mittal, A.: Multi-stage contour based detection of deformable objects. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 483–496. Springer, Heidelberg (2008)
Zhu, Q., Wang, L., Wu, Y., Shi, J.: Contour context selection for object detection: A set-to-set contour matching approach. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 774–787. Springer, Heidelberg (2008)
Schindler, K., Suter, D.: Object detection by global contour shape. Pattern Recognition 41, 3736–3748 (2008)
Stark, M., Goesele, M., Schiele, B.: A shape-based object class model for knowledge transfer. In: Proc. of International Conference on Computer Vision (2009)
Ommer, B., Malik, J.: Multi-scale object detection by clustering lines. In: Proc. of International Conference on Computer Vision (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Danielsson, O., Carlsson, S. (2011). Generic Object Class Detection Using Boosted Configurations of Oriented Edges. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6493. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19309-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-19309-5_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19308-8
Online ISBN: 978-3-642-19309-5
eBook Packages: Computer ScienceComputer Science (R0)