Nothing Special   »   [go: up one dir, main page]

Skip to main content

Generic Object Class Detection Using Boosted Configurations of Oriented Edges

  • Conference paper
Computer Vision – ACCV 2010 (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6493))

Included in the following conference series:

Abstract

In this paper we introduce a new representation for shape-based object class detection. This representation is based on very sparse and slightly flexible configurations of oriented edges. An ensemble of such configurations is learnt in a boosting framework. Each edge configuration can capture some local or global shape property of the target class and the representation is thus not limited to representing and detecting visual classes that have distinctive local structures. The representation is also able to handle significant intra-class variation. The representation allows for very efficient detection and can be learnt automatically from weakly labelled training images of the target class. The main drawback of the method is that, since its inductive bias is rather weak, it needs a comparatively large training set. We evaluate on a standard database [1] and when using a slightly extended training set, our method outperforms state of the art [2] on four out of five classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ferrari, V., Tuytelaars, T., Van Gool, L.: Object detection by contour segment networks. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 14–28. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Maji, S., Malik, J.: Object detection using a max-margin. In: Proc. of the IEEE Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  3. Gavrila, D.M.: A bayesian, exemplar-based approach to hierarchical shape matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 29 (2007)

    Google Scholar 

  4. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 509–522 (2002)

    Article  Google Scholar 

  5. Ferrari, V., Jurie, F., Schmid, C.: Accurate object detection with deformable shape models learnt from images. In: Proc. of the IEEE Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  6. Thuresson, J., Carlsson, S.: Finding object categories in cluttered images using minimal shape prototypes. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 1122–1129. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Carlsson, S.: Order structure, correspondence, and shape based categories. In: Forsyth, D., Mundy, J.L., Di Gesú, V., Cipolla, R. (eds.) Shape, Contour, and Grouping 1999. LNCS, vol. 1681, p. 58. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Shotton, J., Blake, A., Cipolla, R.: Contour-based learning for object detection. In: Proc. of the International Conference of Computer Vision (2005)

    Google Scholar 

  9. Opelt, A., Pinz, A., Zisserman, A.: A boundary-fragment-model for object detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 575–588. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Freund, Y., Schapire, R.E.: A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence 14, 771–780 (1999)

    Google Scholar 

  11. Viola, P.A., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57, 137–154 (2004)

    Article  Google Scholar 

  12. Breu, H., Gil, J., Kirkpatrick, D., Werman, M.: Linear time euclidean distance transform algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence 17, 529–533 (1995)

    Article  Google Scholar 

  13. Fleuret, F., Geman, D.: Coarse-to-fine face detection. International Journal of Computer Vision 4, 85–107 (2001)

    Article  MATH  Google Scholar 

  14. Wu, Y.N., Si, Z., Fleming, C., Zhu, S.C.: Deformable template as active basis. In: Proc. of the International Conference on Computer Vision (2007)

    Google Scholar 

  15. Danielsson, O., Carlsson, S., Sullivan, J.: Automatic learning and extraction of multi-local features. In: Proc. of the International Conference on Computer Vision (2009)

    Google Scholar 

  16. Viola, P.A., Jones, M.J.: Fast and robust classification using asymmetric adaboost and a detector cascade. In: Proc. of Neural Information Processing Systems, pp. 1311–1318 (2001)

    Google Scholar 

  17. Fayyad, U.M.: On the Induction of Decision Trees for Multiple Concept Learning. PhD thesis, The University of Michigan (1991)

    Google Scholar 

  18. Ravishankar, S., Jain, A., Mittal, A.: Multi-stage contour based detection of deformable objects. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 483–496. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Zhu, Q., Wang, L., Wu, Y., Shi, J.: Contour context selection for object detection: A set-to-set contour matching approach. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 774–787. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Schindler, K., Suter, D.: Object detection by global contour shape. Pattern Recognition 41, 3736–3748 (2008)

    Article  MATH  Google Scholar 

  21. Stark, M., Goesele, M., Schiele, B.: A shape-based object class model for knowledge transfer. In: Proc. of International Conference on Computer Vision (2009)

    Google Scholar 

  22. Ommer, B., Malik, J.: Multi-scale object detection by clustering lines. In: Proc. of International Conference on Computer Vision (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Danielsson, O., Carlsson, S. (2011). Generic Object Class Detection Using Boosted Configurations of Oriented Edges. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6493. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19309-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19309-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19308-8

  • Online ISBN: 978-3-642-19309-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics