Abstract
In this paper we study the time complexity of the problem Simultaneous Embedding with Fixed Edges (Sefe), that takes two planar graphs G 1 = (V,E 1) and G 2 = (V,E 2) as input and asks whether a planar drawing Γ1 of G 1 and a planar drawing Γ2 of G 2 exist such that: (i) each vertex v ∈ V is mapped to the same point in Γ1 and in Γ2; (ii) every edge e ∈ E 1 ∩ E 2 is mapped to the same Jordan curve in Γ1 and Γ2. First, we show a polynomial-time algorithm for Sefe when the intersection graph of G 1 and G 2, that is the planar graph G 1 ∩ 2 = (V,E 1 ∩ E 2), is biconnected. Second, we show that Sefe, when G 1 ∩ 2 is a tree, is equivalent to a suitably-defined book embedding problem. Based on such an equivalence and on recent results by Hong and Nagamochi, we show a linear-time algorithm for the Sefe problem when G 1 ∩ 2 is a star.
Supported in part by MIUR (Italy), Projects AlgoDEEP no. 2008TFBWL4 and FIRB “Advanced tracking system in intermodal freight transportation”, no. RBIP06BZW8.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angelini, P., Di Battista, G., Frati, F., Jelínek, V., Kratochvíl, J., Patrignani, M., Rutter, I.: Testing planarity of partially embedded graphs. In: Symposium on Discrete Algorithms (SODA 2010), pp. 202–221 (2010)
Angelini, P., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Testing the simultaneous embeddability of two graphs whose intersection is a biconnected graph or a tree. Tech. Report 175, Dipartimento di Informatica e Automazione, Università Roma Tre (2010)
Angelini, P., Geyer, M., Kaufmann, M., Neuwirth, D.: On a tree and a path with no geometric simultaneous embedding. CoRR (2010)
Braß, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Comput. Geom. 36(2), 117–130 (2007)
Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica 15(4), 302–318 (1996)
Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996)
Di Giacomo, E., Liotta, G.: Simultaneous embedding of outerplanar graphs, paths, and cycles. Int. J. Comput. Geometry Appl. 17(2), 139–160 (2007)
Erten, C., Kobourov, S.G.: Simultaneous embedding of planar graphs with few bends. J. Graph Algorithms Appl. 9(3), 347–364 (2005)
Estrella-Balderrama, A., Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz, M.: Simultaneous geometric graph embeddings. In: Hong, S.H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 280–290. Springer, Heidelberg (2008)
Fowler, J.J., Gutwenger, C., Jünger, M., Mutzel, P., Schulz, M.: An SPQR-tree approach to decide special cases of simultaneous embedding with fixed edges. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 157–168. Springer, Heidelberg (2009)
Fowler, J.J., Jünger, M., Kobourov, S.G., Schulz, M.: Characterizations of restricted pairs of planar graphs allowing simultaneous embedding with fixed edges. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 146–158. Springer, Heidelberg (2008)
Frati, F.: Embedding graphs simultaneously with fixed edges. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 108–113. Springer, Heidelberg (2007)
Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz, M.: Simultaneous graph embeddings with fixed edges. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 325–335. Springer, Heidelberg (2006)
Geyer, M., Kaufmann, M., Vrt’o, I.: Two trees which are self-intersecting when drawn simultaneously. Discrete Mathematics 307, 1909–1916 (2009)
Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)
Hong, S.H., Nagamochi, H.: Two-page book embedding and clustered graph planarity. Tech. Report 2009-004, Department of Applied Mathematics & Physics, Kyoto University (2009)
Jünger, M., Schulz, M.: Intersection graphs in simultaneous embedding with fixed edges. J. Graph Alg. & Appl. 13(2), 205–218 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Angelini, P., Di Battista, G., Frati, F., Patrignani, M., Rutter, I. (2011). Testing the Simultaneous Embeddability of Two Graphs Whose Intersection Is a Biconnected Graph or a Tree. In: Iliopoulos, C.S., Smyth, W.F. (eds) Combinatorial Algorithms. IWOCA 2010. Lecture Notes in Computer Science, vol 6460. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19222-7_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-19222-7_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19221-0
Online ISBN: 978-3-642-19222-7
eBook Packages: Computer ScienceComputer Science (R0)