Nothing Special   »   [go: up one dir, main page]

Skip to main content

Energy-Efficient Target Tracking in Sensor Networks

  • Conference paper
Ad Hoc Networks (ADHOCNETS 2010)

Abstract

In this paper, the problem of collaborative tracking of mobile nodes in wireless sensor networks is addressed. Aiming at an energy efficient solution, we propose a strategy of combining target tracking with node selection procedures in order to select informative sensors to minimize the energy consumption of the tracking task using the energy model by Heinzelman, 2000. We layout a cluster-based architecture to address the limitations in computational, battery power and communications of the sensor devices. The node selection problem is formulated as a cross-layer optimization problem that is solved using a greedy algorithm. To track mobile nodes two particle filters are used: the bootstrap particle filter and the unscented particle filter, both in the centralized and in the distributed manner. Their performance are compared with the distributed sigma-point information filter in literature, under two common channel models: the log-normal shadowing and the Rayleigh fading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless Sensor Networks: A Survey. Computer Networks (Elsevier), 393–422 (March 2002)

    Google Scholar 

  2. Ihler, A.T., et al.: Nonparametric belief propagation for self-localization of sensor networks. IEEE Journal on Selected Areas in Communications 23(4) (April 2005)

    Google Scholar 

  3. Lee, J., Cho, K., Lee, S., Kwon, T., Choi, Y.: Distributed and energy-efficient target localization and tracking in wireless sensor netwoks. Computer Communications 29, 2494–2505 (2006)

    Article  Google Scholar 

  4. Vercauteren, T., Wang, X.: Decentralized Sigma-Point Information Filters for Target Tracking in Collaborative Sensor Networks. IEEE Transactions on Signal Processing 53(8) (August 2005)

    Google Scholar 

  5. Oshman, Y., Davidson, P.: Optimization of observer trajectories for bearings-only target localization. IEEE Transactions on Aerospace and Electronic Systems 35, 892–902 (1999)

    Article  Google Scholar 

  6. Ertin, E., Fisher, J.W., Potter, L.C.: Maximum Mutual Information Principle for Dynamic Sensor Query Problems. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 405–416. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Wang, H., Pottie, G., Yao, K., Estrin, D.: Entropy-based Sensor Selection Heuristic for Target Localization. In: International Workshop on Information Processing in Sensor Networks (IPSN), Berkeley, California, April 26-27 (2004)

    Google Scholar 

  8. Kaplan, L.M.: Global node selection for localization in a distributed sensor network. IEEE Transactions on Aerospace and Electronics Systems 42(1), 113–135 (2006)

    Article  Google Scholar 

  9. Kaplan, L.M.: Local node selection for localization in a distributed sensor network. IEEE Transactions on Aerospace and Electronics Systems 42(1), 136–146 (2006)

    Article  Google Scholar 

  10. Wang, Q., Chen, W.-P., Zheng, R., Lee, K., Sha, L.: Acoustic Target Tracking Using Tiny Wireless Sensor Devices. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 642–657. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Chen, W.-P., Hou, J.C., Sha, L.: Dynamic Clustering for Acoustic Target Tracking in Wireless Sensor Networks. IEEE Trans. on Mobile Computing 3(3), 258–271 (2004)

    Article  Google Scholar 

  12. Kung, H.T., Vlah, D.: Efficient Location Tracking Using Sensor Networks. In: WCNC (March 2003)

    Google Scholar 

  13. Lin, C.-Y., Tseng, Y.-C.: Structures for In-Network Moving Object Tracking in Wireless Sensor Networks. In: BROADNETS (2004)

    Google Scholar 

  14. Zhang, W., Cao, G.: DCTC: Dynamic Convoy Tree-Based Collaboration for Target Tracking in Sensor Networks. IEEE Trans. on Wireless Communications (2004)

    Google Scholar 

  15. Liu, J., Reich, J., Zhao, F.: Collaborative in-network processing for target tracking. EURASIP, J. Appl. Signal Processing, 378–391 (2003)

    Google Scholar 

  16. Zhao, F., Shin, J., Reich, J.: Information-driven dynamic sensor collaboration for tracking applications. IEEE Signal Processing Magazine 19(2), 61–72 (2002)

    Article  Google Scholar 

  17. Kreucher, C.M., Hero, A.O., Kastella, K.D., Morelande, M.R.: An Information-Based Approach to sensor Management in Large Dynamic Networks. Proceeding of IEEE 95, 978–999 (2007)

    Article  Google Scholar 

  18. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H.: Energy-Efficient Communication Protocol for Wireless Microsensor Networks. In: Proceedings of 33rd Hawaii International Conference on System Sciences (HICSS 2000), Maui, Hawaii (January 2000)

    Google Scholar 

  19. Rappaport, T.S.: Wireless Communications. Principles and Practice, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  20. Doucet, A., de Freitas, N., Gordon, N.: Sequential monte carlo methods in practice. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  21. Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/nonlinear gaussian bayesian state estimation. IEEE Proceedings-F 140(2), 107–113 (1993)

    Google Scholar 

  22. Van der Merwe, R., Doucet, A., de Freitas, N., Wan, E.: The Unscented Particle Filter. In: NIPS, pp. 584–590 (2000)

    Google Scholar 

  23. Guo, D., Wang, X.: Dynamic sensor collaboration via sequential monte carlo. IEEE JSAC 22(6), 1037–1047 (2004)

    Google Scholar 

  24. Arienzo, L., Longo, M.: Energy-Efficient Tracking Strategy for Wireless Sensor Networks. In: Proceedings of IEEE MASS 2008, Workshop on Localized Communication and Topology Protocols for Ad hoc Networks, Atlanta, Georgia (September 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Arienzo, L., Longo, M. (2010). Energy-Efficient Target Tracking in Sensor Networks. In: Zheng, J., Simplot-Ryl, D., Leung, V.C.M. (eds) Ad Hoc Networks. ADHOCNETS 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17994-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17994-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17993-8

  • Online ISBN: 978-3-642-17994-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics