Abstract
We focus on the problem of filtering a fragment of the knowledge contained in a large conceptual schema. The problem appears in many information systems development activities in which people need to operate with a piece of the knowledge contained in that schema. We propose a new method in which a user focuses on one or more entity types of interest for her task at hand, and the method automatically filters the schema in order to obtain a set of entity and relationship types (and other knowledge) relevant to that task, taking into account the interest of each entity type with respect to the focus, computed from the measures of importance and closeness of entity types. The method has been implemented in a prototype tool, and it has been experimented with the schema of the osCommerce and the ResearchCyc ontology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Olivé, A.: Conceptual Modeling of Information Systems. Springer, Heidelberg (2007)
Lindland, O.I., Sindre, G., Sølvberg, A.: Understanding quality in conceptual modeling. IEEE Software 11(2), 42–49 (1994)
Conesa, J., Storey, V.C., Sugumaran, V.: Usability of upper level ontologies: The case of researchcyc. Data & Knowledge Engineering 69(4), 343–356 (2010)
Tzitzikas, Y., Hainaut, J.L.: On the visualization of large-sized ontologies. In: AVI 2006, Working Conf. on Advanced Visual Interfaces, pp. 99–102. ACM, New York (2006)
Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.: Ontology visualization methods-a survey. ACM Computing Surveys 39(4), 10 (2007)
Lanzenberger, M., Sampson, J., Rester, M.: Visualization in ontology tools. In: Intl. Conf. on Complex, Intelligent and Software Intensive Systems, pp. 705–711. IEEE Computer Society, Los Alamitos (2009)
Shoval, P., Danoch, R., Balabam, M.: Hierarchical entity-relationship diagrams: the model, method of creation and experimental evaluation. Requirements Engineering 9(4), 217–228 (2004)
Rokach, L., Maimon, O.: Clustering methods. In: Data Mining and Knowledge Discovery Handbook, ch. 15, pp. 321–352. Springer, Heidelberg (2005)
Campbell, L.J., Halpin, T.A., Proper, H.A.: Conceptual schemas with abstractions making flat conceptual schemas more comprehensible. Data & Knowledge Engineering 20(1), 39–85 (1996)
Kuflik, T., Boger, Z., Shoval, P.: Filtering search results using an optimal set of terms identified by an artificial neural network. Information Processing & Management 42(2), 469–483 (2006)
Hanani, U., Shapira, B., Shoval, P.: Information filtering: Overview of issues, research and systems. User Modeling and User-Adapted Interaction 11(3), 203–259 (2001)
Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based specification environment for validating UML and OCL. Science of Computer Programming (2007)
Tort, A., Olivé, A.: The osCommerce Conceptual Schema. Universitat Politècnica de Catalunya (2007), http://guifre.lsi.upc.edu/OSCommerce.pdf
Lenat, D.B.: Cyc: a large-scale investment in knowledge infrastructure. Communications of the ACM 38(11), 33–38 (1995)
Villegas, A., Olivé, A., Vilalta, J.: Improving the usability of hl7 information models by automatic filtering. In: IEEE 6th World Congress on Services (SERVICES), pp. 16–23 (2010), http://www.computer.org/portal/web/csdl/doi/10.1109/SERVICES.2010.32
Villegas, A., Olivé, A.: On computing the importance of entity types in large conceptual schemas. In: Heuser, C.A., Pernul, G. (eds.) ER 2009 Workshops. LNCS, vol. 5833, pp. 22–32. Springer, Heidelberg (2009)
Castano, S., De Antonellis, V., Fugini, M.G., Pernici, B.: Conceptual schema analysis: techniques and applications. ACM Transactions on Database Systems 23(3), 286–333 (1998)
Moody, D.L., Flitman, A.: A methodology for clustering entity relationship models-a human information processing approach. In: Akoka, J., Bouzeghoub, M., Comyn-Wattiau, I., Métais, E. (eds.) ER 1999. LNCS, vol. 1728, pp. 114–130. Springer, Heidelberg (1999)
Tzitzikas, Y., Kotzinos, D., Theoharis, Y.: On ranking rdf schema elements (and its application in visualization). Journal of Universal Computer Science 13(12), 1854–1880 (2007)
Tzitzikas, Y., Hainaut, J.L.: How to tame a very large er diagram (using link analysis and force-directed drawing algorithms). In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 144–159. Springer, Heidelberg (2005)
Yu, C., Jagadish, H.V.: Schema summarization. In: VLDB 2006, 32nd Intl. Conf. on Very Large Data Bases, pp. 319–330 (2006)
Yang, X., Procopiuc, C.M., Srivastava, D.: Summarizing relational databases. In: VLDB 2009, 35th Intl. Conf. on Very Large Data Bases, pp. 634–645 (2009)
Conesa, J.: Pruning and refactoring ontologies in the development of conceptual schemas of information systems. PhD thesis, UPC (2008)
Lenat, D.B., Guha, R.V.: The evolution of cycl, the cyc representation language. ACM SIGART Bulletin 2(3), 84–87 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Villegas, A., Olivé, A. (2010). A Method for Filtering Large Conceptual Schemas. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds) Conceptual Modeling – ER 2010. ER 2010. Lecture Notes in Computer Science, vol 6412. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16373-9_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-16373-9_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16372-2
Online ISBN: 978-3-642-16373-9
eBook Packages: Computer ScienceComputer Science (R0)