Abstract
When performing secure multiparty computation, tasks may often be simple or difficult depending on the representation chosen. Hence, being able to switch representation efficiently may allow more efficient protocols.
We present a new protocol for bit-decomposition: converting a ring element x ∈ ℤ M to its binary representation, x (logM) − 1,...,x 0. The protocol can be based on arbitrary secure arithmetic in ℤ M ; this is achievable for Shamir shared values as well as (threshold) Paillier encrypted ones, implying solutions for both these popular MPC primitives. For additively homomorphic primitives (which is typical, and the case for both examples) the solution is constant-rounds and requires only O(logM) secure ring multiplications.
The solution is secure against active adversaries assuming the existence of additional primitives. These exist for both the Shamir sharing based approach as well as the Paillier based one.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in a constant number of rounds of interaction. In: Rudnicki, P. (ed.) Proceedings of the eighth annual ACM Symposium on Principles of distributed computing, pp. 201–209. ACM Press, New York (1989)
Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryptographic fault-tolerant distributed computations. In: 20th Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM Press, New York (1988)
Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)
Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. Cryptology ePrint Archive, Report 2000/067 (2000), http://eprint.iacr.org/
Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: 20th Annual ACM Symposium on Theory of Computing, pp. 11–19. ACM Press, New York (1988)
Cramer, R., Damgård, I., Nielsen, J.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001)
Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)
Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of paillier’s probabilistic public-key system. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)
Damgård, I.B., Jurik, M.: Client/Server tradeoffs for online elections. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 125–140. Springer, Heidelberg (2002)
Damgård, I., Nielsen, J.: Universally composable efficient multiparty computation from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)
Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer, Heidelberg (2003)
Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and comparison without bit-decomposition protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007)
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)
Reistad, T.: Multiparty comparison - an improved multiparty protocol for comparison of secret-shared values. In: Proceedings of SECRYPT 2009, pp. 325–330 (2009)
Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)
Schoenmakers, B., Tuyls, P.: Efficient binary conversion for paillier encrypted values. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 522–537. Springer, Heidelberg (2006)
Thorbek, R.: Linear Integer Secret Sharing. PhD thesis, Aarhus University (2009)
Toft, T.: Constant-rounds, almost-linear bit-decomposition of secret shared values. In: Fischlin, M. (ed.) RSA Conference 2009. LNCS, vol. 5473, pp. 357–371. Springer, Heidelberg (2009)
Yao, A.: Protocols for secure computations (extended abstract). In: 23th Annual Symposium on Foundations of Computer Science (FOCS 1982), pp. 160–164. IEEE Computer Society Press, Los Alamitos (1982)
Yao, A.: How to generate and exchange secrets (extended abstract). In: 27th Annual Symposium on Foundations of Computer Science, pp. 162–167. IEEE Computer Society Press, Los Alamitos (1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Reistad, T., Toft, T. (2010). Linear, Constant-Rounds Bit-Decomposition. In: Lee, D., Hong, S. (eds) Information, Security and Cryptology – ICISC 2009. ICISC 2009. Lecture Notes in Computer Science, vol 5984. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14423-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-14423-3_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14422-6
Online ISBN: 978-3-642-14423-3
eBook Packages: Computer ScienceComputer Science (R0)