Abstract
In this paper, inspired by the idea that many real networks are composed by sorts of communities, we investigate the synchronization property of oscillators on such community networks. We identify the communities by two ways, one is by the structure of individual community and the other by the intrinsic frequencies probability density g(ω) of Kuramoto oscillators on different communities. For the two sorts of community networks, when the community structure is strong, only the oscillators on the same community synchronize. With the weakening of the community strength, an interesting phenomenon appears: although the global synchronization is not achieved, oscillators on the same sort of communities will synchronize independently. Global synchronization will appear with the further weakening of community structure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002)
Girvan, M., Newnam, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. U.S.A. 99, 8271 (2002)
Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community struc e ture of complex networks in nature and society. Nature 435, 814 (2005)
Strogatz, S.H.: SYNC-How the emerges from chaos in the universe, nature, and daily life. Hyperion, New York (2003)
Nishikawa, T., Motter, A.E., Lai, Y.-C., Hoppensteadt, F.C.: Heterogeneity in Oscillator Networks: Are Smaller Worlds Easier to Synchronize? Phys. Rev. Lett. 91, 14101 (2003)
Hong, H., Kim, B.J., Choi, M.Y., Park, H.: Factors that predict better synchronizability on complex networks. Phys, Rev. E 69, 067105 (2004)
Donetti, L., Hurtado, P.I., Muñoz, M.A.: Entangled Networks, Synchronization, and Optimal Network Topology. Phys. Rev. Lett. 95, 188701 (2005)
Zhao, M., Zhou, T., Wang, B.-H., Yan, G., Yang, H.-J., Bai, W.-J.: Relations between average distance, heterogeneity and network synchronizability. Physica A 371, 773–780 (2006)
Oh, E., Rho, K., Hong, H., Kahng, B.: Modular synchronization in complex networks. Phys. Rev. E 72, 047101 (2005)
Zhou, T., Zhao, M., Chen, G., Yan, G., Wang, B.-H.: Phase synchronization on scale-free networks with community structure. Phys. Lett. A 368, 431 (2007)
Park, K., Lai, Y.-C., Gupte, S., Kim, J.-W.: Synchronization in complex networks with a modular structure. Chaos 16, 015105 (2006)
Kuramoto, Y.: Araki, H. (ed.) Proceedings of the International Symposium on Mathematical Problems in Theoretical Physics. Springer, New York (1975)
Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Berlin (1984)
Kuramoto, Y., Nishikawa, I.: Statistical Macrodynamics of Large Dynamical Systems. Case of a Phase Transition in Oscillator Communities. J. Stat. Phys. 49, 569 (1987)
Daido, H.: Population Dynamics of Randomly Interacting Self-Oscillators. I. Prog. Theor. Phys. 77, 622 (1987)
Daido, H.: Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions. Phys. Rev. Lett. 68, 1073 (1992)
Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440 (1998)
Lago-Fernández, L.F., Huerta, R., Corbacho, F., Sigüenza, J.A.: Fast Response and Temporal Coherent Oscillations in Small-world Networks. Phys. Rev. Lett. 84, 2758 (2000)
Wang, X.F., Chen, G.: Synchronization in small-world dynamical networks. Int. J. Bifurcation Chaos Appl. Sci. Eng. 12, 187 (2002)
Barahona, M., Pecora, L.M.: Synchronization in Small-World Systems. Phys. Rev. Lett. 89, 054101 (2002)
Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509 (1999)
Krapivsky, P.L., Render, S., Leyvraz, F.: Connectivity of Growing Random Networks. Phys. Rev. Lett. 85, 4629 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Zhao, M., Zhou, T., Yang, HJ., Yan, G., Wang, BH. (2009). Synchronization in Complex Networks with Different Sort of Communities. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02466-5_92
Download citation
DOI: https://doi.org/10.1007/978-3-642-02466-5_92
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02465-8
Online ISBN: 978-3-642-02466-5
eBook Packages: Computer ScienceComputer Science (R0)