Nothing Special   »   [go: up one dir, main page]

Skip to main content

Nanostencil and InkJet Printing for Bionanotechnology Applications

  • Conference paper
Nano-Net (NanoNet 2009)

Abstract

In this contribution we describe the application of Ink-Jet printing and Stencil Lithography in bionanotechnology. Both techniques are alternative patterning methods that can be used for the fabrication of biocompatible micro- and nanostructures out of the costly and restricted clean room environment. The applications presented in this contribution are 1) the cell patterning using Au dot arrays deposited on PDMS,by stencil lithography, 2) the fabrication of biosensors based on localized surface plasmon resonance in Au nanodots deposited by stencil lithography and 3) the printing of cells and biomolecules by InkJet printing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brugger, J., Berenschot, J.W., Kuiper, S., Nijdam, W., Otter, B., Elwenspoek, M.: Resistless patterning of sub-micron structures by evaporation through nanostencils. Microelectron. Eng. 53, 403–405 (2000)

    Article  Google Scholar 

  2. Deshmukh, M.M., Ralph, D.C., Thomas, M., Silcox, J.: Nanofabrication using a stencil mask. Appl. Phys. Lett. 75, 1631–1633 (1999)

    Article  Google Scholar 

  3. Vazquez-Mena, O., Villanueva, G., Savu, V., Sidler, K., van den Boogaart, M.A.F., Brugger, J.: Metallic Nanowires by Full Wafer Stencil Lithography. Nano Lett. 8, 3675–3682 (2008)

    Article  Google Scholar 

  4. Viallet, B., Grisolia, J., Ressier, L., Van Den Boogaart, M.A.F., Brugger, J., Lebraud, T.: Stencil-assisted reactive ion etching for micro and nano patterning. Microelectro. Eng. 85, 1705–1708 (2008)

    Article  Google Scholar 

  5. Villanueva, G., Martin, C., Vazquez-Mena, O., Montserrat, J., Langlet, P., Bausells, J., Brugger, J.: In: MNE 2008, Athens, Greece (2008)

    Google Scholar 

  6. Villanueva, G., Vazquez-Mena, O., van den Boogaart, M.A.F., Sidler, K., Pataky, K., Savu, V., Brugger, J.: Etching of sub-micrometer structures through Stencil. Microelectron. Eng. 85, 1010–1014 (2008)

    Article  Google Scholar 

  7. Théry, M., Racine, V., Pépin, A., Piel, M., Chen, Y., Sibarita, J.B., Bornens, M.: The extracellular matrix guides the orientation of the cell division axis. Nat. Cell Biol. 7, 947–953 (2005)

    Article  Google Scholar 

  8. Dalby, M.J., Gadegaard, N., Tare, R., Andar, A., Riehle, M.O., Herzyk, P., Wilkinson, C.D.W., Oreffo, R.O.C.: The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater. 6, 997–1003 (2007)

    Article  Google Scholar 

  9. Anker, J.N., Hall, W.P., Lyandres, O., Shah, N.C., Zhao, J., Van Duyne, R.P.: Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008)

    Article  Google Scholar 

  10. Homola, J.: Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev. 108, 462–493 (2008)

    Article  Google Scholar 

  11. Vazquez-Mena, O., Sannomiya, T., Tosun, M., Villanueva, G., Vörös, J., Brugger, J.: Analysis and Applications of Nanostructures created by Stencil Lithography. In: Transducers, Denver, Co. U.S.A. (2009)

    Google Scholar 

  12. Boland, T., Tao, X., Damon, B.J., Manley, B., Kesari, P., Jalota, S., Bhaduri, S.: Drop-on-demand printing of cells and materials for designer tissue constructs. Mat. Sci. Eng. C 27, 372–376 (2007)

    Article  Google Scholar 

  13. Wilson Jr., W.C., Boland, T.: Cell and organ printing 1: Protein and cell printers. Anatomical Record - Part A Discoveries in Molecular, Cellular, and Evolutionary Biology 272, 491–496 (2003)

    Article  Google Scholar 

  14. Saunders, R.E., Gough, J.E., Derby, B.: Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 29, 193–203 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Pataky, K., Vazquez-Mena, O., Brugger, J. (2009). Nanostencil and InkJet Printing for Bionanotechnology Applications. In: Schmid, A., Goel, S., Wang, W., Beiu, V., Carrara, S. (eds) Nano-Net. NanoNet 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04850-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04850-0_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04849-4

  • Online ISBN: 978-3-642-04850-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics