Nothing Special   »   [go: up one dir, main page]

Skip to main content

Frequent Itemset Mining in Multirelational Databases

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5722))

Included in the following conference series:

  • 1251 Accesses

Abstract

This paper proposes a new approach to mine multirelational databases. Our approach is based on the representation of a multirelational database as a set of trees. Tree mining techniques can then be applied to identify frequent patterns in this kind of databases. We propose two alternative schemes for representing a multirelational database as a set of trees. The frequent patterns that can be identified in such set of trees can be used as the basis for other multirelational data mining techniques, such as association rules, classification, or clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tung, A.K.H., Lu, H., Han, J., Feng, L.: Efficient mining of intertransaction association rules. IEEE Transaction on Knowlegde and Data Engeneering 15(1), 43–56 (2003)

    Article  Google Scholar 

  2. Lee, A.J.T., Wang, C.S.: An efficient algorithm for mining frequent inter-transaction patterns. Inf. Sci. 177(17), 3453–3476 (2007)

    Article  Google Scholar 

  3. Džeroski, S.: Multi-relational data mining: An introduction. SIGKDD Explorations Newsletter 5(1), 1–16 (2003)

    Article  MathSciNet  Google Scholar 

  4. Yin, X., Han, J., Yang, J., Yu, P.S.: CrossMine: efficient classification across multiple database relations. In: International Conference on Data Engineering, pp. 399–410 (2004)

    Google Scholar 

  5. Yin, X., Han, J., Yu, P.S.: Cross-relational clustering with user’s guidance. In: Knowledge Discovery and Data Mining, pp. 344–353 (2005)

    Google Scholar 

  6. Booch, G., Rumbaugh, J., Jacobson, I.: Unified Modeling Language User Guide, 2nd edn. The Addison-Wesley Object Technology Series. Addison-Wesley Professional, Reading (2005)

    Google Scholar 

  7. Zaki, M.J.: Efficiently mining frequent trees in a forest: Algorithms and applications. IEEE Transactions on Knowledge and Data Engineering 17(8), 1021–1035 (2005)

    Article  Google Scholar 

  8. Zaki, M.J.: Efficiently mining frequent embedded unordered trees. Fundamenta Informaticae 66(1-2), 33–52 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Jimenez, A., Berzal, F., Cubero, J.C.: Mining induced and embedded subtrees in ordered, unordered, and partially-ordered trees. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) Foundations of Intelligent Systems. LNCS (LNAI), vol. 4994, pp. 111–120. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Chi, Y., Muntz, R.R., Nijssen, S., Kok, J.N.: Frequent subtree mining - an overview. Fundamenta Informaticae 66(1-2), 161–198 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiménez, A., Berzal, F., Cubero, JC. (2009). Frequent Itemset Mining in Multirelational Databases. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds) Foundations of Intelligent Systems. ISMIS 2009. Lecture Notes in Computer Science(), vol 5722. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04125-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04125-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04124-2

  • Online ISBN: 978-3-642-04125-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics