Abstract
This paper proposes a new approach to mine multirelational databases. Our approach is based on the representation of a multirelational database as a set of trees. Tree mining techniques can then be applied to identify frequent patterns in this kind of databases. We propose two alternative schemes for representing a multirelational database as a set of trees. The frequent patterns that can be identified in such set of trees can be used as the basis for other multirelational data mining techniques, such as association rules, classification, or clustering.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tung, A.K.H., Lu, H., Han, J., Feng, L.: Efficient mining of intertransaction association rules. IEEE Transaction on Knowlegde and Data Engeneering 15(1), 43–56 (2003)
Lee, A.J.T., Wang, C.S.: An efficient algorithm for mining frequent inter-transaction patterns. Inf. Sci. 177(17), 3453–3476 (2007)
Džeroski, S.: Multi-relational data mining: An introduction. SIGKDD Explorations Newsletter 5(1), 1–16 (2003)
Yin, X., Han, J., Yang, J., Yu, P.S.: CrossMine: efficient classification across multiple database relations. In: International Conference on Data Engineering, pp. 399–410 (2004)
Yin, X., Han, J., Yu, P.S.: Cross-relational clustering with user’s guidance. In: Knowledge Discovery and Data Mining, pp. 344–353 (2005)
Booch, G., Rumbaugh, J., Jacobson, I.: Unified Modeling Language User Guide, 2nd edn. The Addison-Wesley Object Technology Series. Addison-Wesley Professional, Reading (2005)
Zaki, M.J.: Efficiently mining frequent trees in a forest: Algorithms and applications. IEEE Transactions on Knowledge and Data Engineering 17(8), 1021–1035 (2005)
Zaki, M.J.: Efficiently mining frequent embedded unordered trees. Fundamenta Informaticae 66(1-2), 33–52 (2005)
Jimenez, A., Berzal, F., Cubero, J.C.: Mining induced and embedded subtrees in ordered, unordered, and partially-ordered trees. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) Foundations of Intelligent Systems. LNCS (LNAI), vol. 4994, pp. 111–120. Springer, Heidelberg (2008)
Chi, Y., Muntz, R.R., Nijssen, S., Kok, J.N.: Frequent subtree mining - an overview. Fundamenta Informaticae 66(1-2), 161–198 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jiménez, A., Berzal, F., Cubero, JC. (2009). Frequent Itemset Mining in Multirelational Databases. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds) Foundations of Intelligent Systems. ISMIS 2009. Lecture Notes in Computer Science(), vol 5722. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04125-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-04125-9_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04124-2
Online ISBN: 978-3-642-04125-9
eBook Packages: Computer ScienceComputer Science (R0)