Nothing Special   »   [go: up one dir, main page]

Skip to main content

A New Approach to Adapting Control Parameters in Differential Evolution Algorithm

  • Conference paper
Simulated Evolution and Learning (SEAL 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5361))

Included in the following conference series:

Abstract

In Differential Evolution, control parameters play important roles in balancing the exploration and exploitation capability, and different control parameters are required for different types of problems. However, finding optimal control parameters for each problem is difficult and not realistic. Hence, we propose a method to adjust them adaptively in this paper. In our proposed method, whether or not the current control parameters will be adjusted is based on a probability that is adaptively calculated according to their previous performance. Besides, normal distribution with variable mean value and standard deviation is employed to generate new control parameters. Performance on a set of benchmark functions indicates that our proposed method converges fast and achieves competitive results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Storn, R., Price, K.: Differential evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces. Internation Computer Science Institute, Berkley, Tech. Rep. (1995)

    Google Scholar 

  2. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation 10, 646–657 (2006)

    Article  Google Scholar 

  4. Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. In: TENCON 2002. Proceedings. 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering, vol. 1, pp. 606–611 (October 2002)

    Google Scholar 

  5. Das, S., Konar, A., Chakraborty, U.K.: Two improved differential evolution schemes for faster global search. In: GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation, pp. 991–998 (2005)

    Google Scholar 

  6. Storn, R.: On the usage of differential evolution for function optimization. In: Fuzzy Information Processing Society, 1996. NAFIPS. Biennial Conference of the North American, June 1996, pp. 519–523 (1996)

    Google Scholar 

  7. Ali, M.M., Törn, A.: Population set-based global optimization algorithms: some modifications and numerical studies. Comput. Oper. Res. 31, 1703–1725 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brest, J., Bošković, B., Greiner, S., Žumer, V., Maučec, M.S.: Performance comparison of self-adaptive and adaptive differential evolution algorithms. Soft Comput. 11, 617–629 (2007)

    Article  MATH  Google Scholar 

  9. Liu, J., Lampinen, J.: On setting the control parameters of differential evolution method. In: Proc. 8th Int. Conf. Soft Computing, pp. 11–18 (2002)

    Google Scholar 

  10. Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for numerical optimization. The 2005 IEEE Congress on Evolutionary Computation 2, 1785–1791 (2005)

    Article  Google Scholar 

  11. Kirkpatrick Jr., S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feng, L., Yang, YF., Wang, YX. (2008). A New Approach to Adapting Control Parameters in Differential Evolution Algorithm. In: Li, X., et al. Simulated Evolution and Learning. SEAL 2008. Lecture Notes in Computer Science, vol 5361. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89694-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89694-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89693-7

  • Online ISBN: 978-3-540-89694-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics