Abstract
In Differential Evolution, control parameters play important roles in balancing the exploration and exploitation capability, and different control parameters are required for different types of problems. However, finding optimal control parameters for each problem is difficult and not realistic. Hence, we propose a method to adjust them adaptively in this paper. In our proposed method, whether or not the current control parameters will be adjusted is based on a probability that is adaptively calculated according to their previous performance. Besides, normal distribution with variable mean value and standard deviation is employed to generate new control parameters. Performance on a set of benchmark functions indicates that our proposed method converges fast and achieves competitive results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Storn, R., Price, K.: Differential evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces. Internation Computer Science Institute, Berkley, Tech. Rep. (1995)
Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)
Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation 10, 646–657 (2006)
Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. In: TENCON 2002. Proceedings. 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering, vol. 1, pp. 606–611 (October 2002)
Das, S., Konar, A., Chakraborty, U.K.: Two improved differential evolution schemes for faster global search. In: GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation, pp. 991–998 (2005)
Storn, R.: On the usage of differential evolution for function optimization. In: Fuzzy Information Processing Society, 1996. NAFIPS. Biennial Conference of the North American, June 1996, pp. 519–523 (1996)
Ali, M.M., Törn, A.: Population set-based global optimization algorithms: some modifications and numerical studies. Comput. Oper. Res. 31, 1703–1725 (2004)
Brest, J., Bošković, B., Greiner, S., Žumer, V., Maučec, M.S.: Performance comparison of self-adaptive and adaptive differential evolution algorithms. Soft Comput. 11, 617–629 (2007)
Liu, J., Lampinen, J.: On setting the control parameters of differential evolution method. In: Proc. 8th Int. Conf. Soft Computing, pp. 11–18 (2002)
Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for numerical optimization. The 2005 IEEE Congress on Evolutionary Computation 2, 1785–1791 (2005)
Kirkpatrick Jr., S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Feng, L., Yang, YF., Wang, YX. (2008). A New Approach to Adapting Control Parameters in Differential Evolution Algorithm. In: Li, X., et al. Simulated Evolution and Learning. SEAL 2008. Lecture Notes in Computer Science, vol 5361. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89694-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-89694-4_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89693-7
Online ISBN: 978-3-540-89694-4
eBook Packages: Computer ScienceComputer Science (R0)