Summary
This work presents a parallel framework for the solution of multi-objective optimization problems. The framework implements some of the best known multi-objective evolutionary algorithms. The framework architecture makes usage of configuration files to provide a more extensive and simple customization environment than other similar tools. A wide variety of configuration options can be specified to adapt the software behaviour to many different parallel models, including a new adaptive model which dynamically grants more computational resources to the most promising algorithms. The plugin-based architecture of the framework minimizes the final user effort required to incorporate their own problems and evolutionary algorithms, and facilitates the tool maintenance. The flexibility of the approach has been tested by configuring a standard homogeneous island-based model and a self-adaptive model. The computational results obtained for problems with different granularity demonstrate the efficiency of the provided parallel implementation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Coello, C.A.: An Updated Survey of Evolutionary Multiobjective Optimization Techniques: State of the Art and Future Trends. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proceedings of the Congress on Evolutionary Computation, vol. 1, pp. 3–13. IEEE Press, Los Alamitos (1999)
Veldhuizen, D.A.V., Zydallis, J.B., Lamont, G.B.: Considerations in engineering parallel multiobjective evolutionary algorithms. IEEE Trans. Evolutionary Computation 7, 144–173 (2003)
Cantú-Paz, E.: A survey of parallel genetic algorithms. Technical report, IlliGAL 97003. University of Illinois, Urbana-Champaign (1997)
Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA — a platform and programming language independent interface for search algorithms. In: Evolutionary Multi-Criterion Optimization. LNCS, pp. 494–508. Springer, Heidelberg (2003)
Emmerich, M., Hosenberg, R.: TEA - A Toolbox for the Design of Parallel Evolutionary Algorithms in C++. Technical Report CI-106/01, SFB 531, University of Dortmund, Germany (2001)
Gagné, C., Parizeau, M.: Genericity in Evolutionary Computation Software Tools: Principles and Case Study. International Journal on Artificial Intelligence Tools 15, 173–194 (2006)
Liefooghe, A., Basseur, M., Jourdan, L., Talbi, E.G.: ParadisEO-MOEO: A Framework for Evolutionary Multi-objective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 386–400. Springer, Heidelberg (2007)
León, C., Miranda, G., Segura, C.: Parallel Hyperheuristic: A Self-Adaptive Island-Based Model for Multi-Objective Optimization. In: Genetic and Evolutionary Computation Conference. ACM, New York (to appear, 2008)
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8, 173–195 (2000)
Zitzler, E., Thiele, L.: An Evolutionary Algorithm for Multiobjective Optimization: The Strength Pareto Approach. Technical Report 43, Computer Engineering and Networks Laboratory (TIK), Zurich, Switzerland (1998)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. Evolutionary Methods for Design, Optimization and Control, 19–26 (2002)
Srinivas, N., Deb, K.: Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation 2, 221–248 (1994)
Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)
Zitzler, E., Künzli, S.: Indicator-Based Selection in Multiobjective Search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)
Coello, C.A., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic and Evolutionary Computation (2007)
Branke, J., Schmeck, H., Deb, K., Maheshwar, R.: Parallelizing multi-objective evolutionary algorithms: Cone separation. In: IEEE Congress on Evolutionary Computation, pp. 1952–1957. IEEE Press, Los Alamitos (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
León, C., Miranda, G., Segura, C. (2009). A Parallel Plugin-Based Framework for Multi-objective Optimization. In: Corchado, J.M., Rodríguez, S., Llinas, J., Molina, J.M. (eds) International Symposium on Distributed Computing and Artificial Intelligence 2008 (DCAI 2008). Advances in Soft Computing, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85863-8_18
Download citation
DOI: https://doi.org/10.1007/978-3-540-85863-8_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85862-1
Online ISBN: 978-3-540-85863-8
eBook Packages: EngineeringEngineering (R0)