Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Advances in Soft Computing ((AINSC,volume 50))

  • 1339 Accesses

Summary

This work presents a parallel framework for the solution of multi-objective optimization problems. The framework implements some of the best known multi-objective evolutionary algorithms. The framework architecture makes usage of configuration files to provide a more extensive and simple customization environment than other similar tools. A wide variety of configuration options can be specified to adapt the software behaviour to many different parallel models, including a new adaptive model which dynamically grants more computational resources to the most promising algorithms. The plugin-based architecture of the framework minimizes the final user effort required to incorporate their own problems and evolutionary algorithms, and facilitates the tool maintenance. The flexibility of the approach has been tested by configuring a standard homogeneous island-based model and a self-adaptive model. The computational results obtained for problems with different granularity demonstrate the efficiency of the provided parallel implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Coello, C.A.: An Updated Survey of Evolutionary Multiobjective Optimization Techniques: State of the Art and Future Trends. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proceedings of the Congress on Evolutionary Computation, vol. 1, pp. 3–13. IEEE Press, Los Alamitos (1999)

    Google Scholar 

  2. Veldhuizen, D.A.V., Zydallis, J.B., Lamont, G.B.: Considerations in engineering parallel multiobjective evolutionary algorithms. IEEE Trans. Evolutionary Computation 7, 144–173 (2003)

    Article  Google Scholar 

  3. Cantú-Paz, E.: A survey of parallel genetic algorithms. Technical report, IlliGAL 97003. University of Illinois, Urbana-Champaign (1997)

    Google Scholar 

  4. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA — a platform and programming language independent interface for search algorithms. In: Evolutionary Multi-Criterion Optimization. LNCS, pp. 494–508. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Emmerich, M., Hosenberg, R.: TEA - A Toolbox for the Design of Parallel Evolutionary Algorithms in C++. Technical Report CI-106/01, SFB 531, University of Dortmund, Germany (2001)

    Google Scholar 

  6. Gagné, C., Parizeau, M.: Genericity in Evolutionary Computation Software Tools: Principles and Case Study. International Journal on Artificial Intelligence Tools 15, 173–194 (2006)

    Article  Google Scholar 

  7. Liefooghe, A., Basseur, M., Jourdan, L., Talbi, E.G.: ParadisEO-MOEO: A Framework for Evolutionary Multi-objective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 386–400. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. León, C., Miranda, G., Segura, C.: Parallel Hyperheuristic: A Self-Adaptive Island-Based Model for Multi-Objective Optimization. In: Genetic and Evolutionary Computation Conference. ACM, New York (to appear, 2008)

    Google Scholar 

  9. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8, 173–195 (2000)

    Article  Google Scholar 

  10. Zitzler, E., Thiele, L.: An Evolutionary Algorithm for Multiobjective Optimization: The Strength Pareto Approach. Technical Report 43, Computer Engineering and Networks Laboratory (TIK), Zurich, Switzerland (1998)

    Google Scholar 

  11. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. Evolutionary Methods for Design, Optimization and Control, 19–26 (2002)

    Google Scholar 

  12. Srinivas, N., Deb, K.: Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation 2, 221–248 (1994)

    Article  Google Scholar 

  13. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  14. Zitzler, E., Künzli, S.: Indicator-Based Selection in Multiobjective Search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

    Google Scholar 

  15. Coello, C.A., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic and Evolutionary Computation (2007)

    Google Scholar 

  16. Branke, J., Schmeck, H., Deb, K., Maheshwar, R.: Parallelizing multi-objective evolutionary algorithms: Cone separation. In: IEEE Congress on Evolutionary Computation, pp. 1952–1957. IEEE Press, Los Alamitos (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Juan M. Corchado Sara Rodríguez James Llinas José M. Molina

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

León, C., Miranda, G., Segura, C. (2009). A Parallel Plugin-Based Framework for Multi-objective Optimization. In: Corchado, J.M., Rodríguez, S., Llinas, J., Molina, J.M. (eds) International Symposium on Distributed Computing and Artificial Intelligence 2008 (DCAI 2008). Advances in Soft Computing, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85863-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85863-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85862-1

  • Online ISBN: 978-3-540-85863-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics