Abstract
In this paper, we introduce a new piecewise linear parameterization of 3D surface patches which provides a basis for texture mapping, morphing, remeshing, and geometry imaging. To lower distortion when flatting a 3D surface patch, we propose a new method to locally calculate straightest distances with cutting planes. Our new and simple technique demonstrates competitive results to the current leading parameterizations and will help many applications that require one-to-one mapping.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Chen, J., Han, Y.: Shortest Paths on a Polyhedron; Part I: Computing Shortest Paths. Int. J. Comp. Geom. & Appl. 6(2) (1996)
Desbrun, M., Meyer, M., Alliez, P.: Intrinsic Parameterizations of Surface Meshes. In: Eurographics 2002 Conference Proceeding (2002)
Floater, M., Gotsman, C.: How To Morph Tilings Injectively. J. Comp. Appl. Math. (1999)
Floater, M.: Parametrization and smooth approximation of surface triangulations. Computer Aided Geometric Design (1997)
Floater, M.: Mean Value Coordinates. Comput. Aided Geom. Des. (2003)
Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., Dobkin, D.: Modeling by example. ACM Transactions on Graphics (2004)
Kimmel, R., Sethian, J.A.: Computing Geodesic Paths on Manifolds. Proc. Natl. Acad. Sci. USA 95 (1998)
Lee, Y., Kim, H., Lee, S.: Mesh Parameterization with a Virtual Boundary. Computer and Graphics 26 (2002)
Lee, H., Kim, L., Meyer, M., Desbrun, M.: Meshes on Fire. Computer Animation and Simulation, Eurographics 2001 (2001)
Lee, H., Tong, Y., Desbrun, M.: Geodesics-Based One-to-One Parameterization of 3D Triangle Meshes. IEEE Multimedia 12(1) (2005)
Meyer, M., Lee, H., Barr, A., Desbrun, M.: Generalized Barycentric Coordinates to Irregular N-gons. Journal of Graphics Tools (2002)
Mitchell, J.S.B.: Geometric Shortest Paths and network optimization. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, Elsevier, Amsterdam (2000)
Mitchell, J.S.B., Mount, D.M., Papadimitriou, C.H.: The Discrete Geodesic Problem. SIAM J. of Computing 16(4) (1987)
Peyré, G., Cohen, L.: Geodesic Re-meshing and Parameterization Using Front Propagation. In: Proceedings of VLSM’03 (2003)
Polthier, K., Schmies, M.: Straightest Geodesics on Polyhedral Surfaces. Mathematical Visualization (1998)
Polthier, K., Schmies, M.: Geodesic Flow on Polyhedral Surfaces. In: Proceedings of Eurographics-IEEE Symposium on Scientific Visualization ’99 (1999)
Press, W., Teuklosky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C, 2nd edn. Cambridge University Press, New York (1992)
Riken, T., Suzuki, H.: Approximate Shortest Path on a Polyhedral Surface Based on Selective Refinement of the Discrete Graph and Its Applications. In: Geometric Modeling and Processing 2000, Hongkong (2000)
Sander, P.V., Snyder, J., Gortler, S.J., Hoppe, H.: Texture Mapping Progressive Meshes. In: Proceedings of SIGGRAPH 2001 (2001)
Sifri, O., Sheffer, A., Gotsman, C.: Geodesic-based Surface Remeshing. In: Proceedings of 12th Intnl. Meshing Roundtable (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Lee, S., Lee, H. (2007). Parameterization of 3D Surface Patches by Straightest Distances. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds) Computational Science – ICCS 2007. ICCS 2007. Lecture Notes in Computer Science, vol 4488. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72586-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-72586-2_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72585-5
Online ISBN: 978-3-540-72586-2
eBook Packages: Computer ScienceComputer Science (R0)