Abstract
At PKC 2003 Paeng, Jung, and Ha proposed a lattice based public key cryptosystem(PJH). It is originated from GGH, and designed as a hybrid of GGH and NTRUEncrypt in order to reduce the key size. They claimed that PJH is secure against all possible attacks, especially against lattice attacks. However, in this paper, we present a key recovery attack, based on lattice theory, against PJH. The running time of our attack is drastically short. For example, we could recover all secret keys within 10 minutes even for the system with n = 1001 on a single PC. Unlike other lattice attacks against NTRUEncrypt and GGH, the attack may be applied well to the system with much larger parameters. We present some clues why we believe so. Based on this belief, we declare that PJH should not be used in practice.
Chapter PDF
Similar content being viewed by others
References
Ajtai, M.: Generating Hard Instances of Lattice Problems. In: Proc. of 28th ACM STOC, pp. 99–108. ACM Press, New York (1996)
Ajtai, M., Dwork, C.: A Public-key Cryptosystem with Worst-case/Average-case Equivalence. In: Proc. of 29th ACM STOC, pp. 284–293. ACM Press, New York (1997)
Coppersmith, D., Shamir, A.: Lattice Attacks on NTRU. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Heidelberg (1997)
Goldreich, G., Goldwasser, S., Halevi, S.: Public-key Cryptosystems from Lattice Reduction Problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997)
Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A Ring-Based Public Key Cryptosystem. In: Buhler, J.P. (ed.) Algorithmic Number Theory. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)
Hoffstein, J., Silverman, J.H., Whyte, W.: Estimated Breaking Times for NTRU Lattices. Technical Report #12(Version 2), NTRU Cryptosystems (2003)
Howgrave-Graham, N., Silverman, J.H., Whyte, W.: Choosing Parameter Sets for NTRUEncrypt with NAEP and SVES-3. In: Menezes, A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 118–135. Springer, Heidelberg (2005)
Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring Polynomials with Rational Coefficients. Mathematische Ann. 261, 513–534 (1982)
McEliece, R.J.: A public-key Cryptosystem Based on Algebraic Coding Theory. DSN Prog. Rep., Jet Prop. Lab., California Inst. Technol., Pasadena, CA, pp. 114–116 (January 1978)
Micciancio, D.: Improving Lattice Based Cryptosystems Using the Hermite Normal Form. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 126–145. Springer, Heidelberg (2001)
Micciancio, D., Goldwasser, S.: Complexity of lattice problems: A Cryptographic perspective. Kluwer Academic Publishers, Dordrecht (2002)
Nguyen, P.Q.: Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem from Crypto ’97. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 288–304. Springer, Heidelberg (1999)
Nguyen, P.Q., Regev, O.: Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 271–288. Springer, Heidelberg (2006)
Nguyen, P.Q., Stehlé, D.: Floating-point LLL revisited. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2005)
Nguyen, P.Q., Stehlé, D.: LLL on the Average. In: Hess, F., Pauli, S., Pohst, M. (eds.) Algorithmic Number Theory. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg (2006)
Nguyen, P.Q., Stern, J.: The Two Faces of Lattices in Cryptology. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 146–180. Springer, Heidelberg (2001)
NTL - A Number Theory Library. Available at http://shoup.net/ntl
Paeng, S., Jung, B.E., Ha, K.: A Lattice Based Public Key Cryptosystem Using Polynomial Representations. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 292–308. Springer, Heidelberg (2002)
Schnorr, C.P.: A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms. Theoretical Computer Science 53, 201–224 (1987)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Han, D., Kim, MH., Yeom, Y. (2007). Cryptanalysis of the Paeng-Jung-Ha Cryptosystem from PKC 2003. In: Okamoto, T., Wang, X. (eds) Public Key Cryptography – PKC 2007. PKC 2007. Lecture Notes in Computer Science, vol 4450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71677-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-71677-8_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71676-1
Online ISBN: 978-3-540-71677-8
eBook Packages: Computer ScienceComputer Science (R0)