Abstract
Rough set theory provides an alternative way of representing sets whose exact boundary cannot be described due to incomplete information. Rough sets have been widely used for classification and can be equally beneficial in clustering. The clusters in practical data mining do not necessarily have crisp boundaries. An object may belong to more than one cluster. This paper describes modifications of clustering based on Genetic Algorithms, K-means algorithm, and Kohonen Self-Organizing Maps (SOM). These modifications make it possible to represent clusters as rough sets. Rough clusters are shown to be useful for representing groups of highway sections, Web users, and supermarket customers. The rough clusters are also compared with conventional and fuzzy clusters.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Buckles, B.P., Petry, F.E.: Genetic Algorithms. IEEE Computer Press, Los Alamitos (1994)
Hartigan, J.A., Wong, M.A.: Algorithm AS136: A K-Means Clustering Algorithm. Applied Statistics 28, 100–108 (1979)
Hirano, S., Tsumoto, S.: Rough Clustering and Its Application to Medicine. Journal of Information Science 124, 125–137 (2000)
Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)
Joshi, A., Krishnapuram, R.: Robust Fuzzy Clustering Methods to Support Web Mining. In: Proceedings of the workshop on Data Mining and Knowledge Discovery, SIGMOD ’98, 15/1-15/8 (1998)
Kohonen, T.: Self-Organization and Associative Memory. Springer, Berlin (1988)
Lingras, P.: Unsupervised Rough Set Classification using GAs. Journal Of Intelligent Information Systems 16(3), 215–228 (2001)
Lingras, P.: Rough set clustering for Web mining. In: Proceedings of 2002 IEEE International Conference on Fuzzy Systems, IEEE Computer Society Press, Los Alamitos (2002)
Lingras, P., Adams, G.: Selection of Time-Series for Clustering Supermarket Customers. Technical Report 2002_006, Department of Mathematics and Computing Science, Saint Mary’s University, Halifax, N.S., Canada (2002), http://cs.stmarys.ca/tech_reports/
Lingras, P., West, C.: Interval Set Clustering of Web Users with Rough K-means. Journal of Intelligent Information Systems 23(1), 5–16 (2004)
Lingras, P., et al.: Clustering Supermarket Customers using Rough Set Based Kohonen Networks. In: Zhong, N., et al. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871, pp. 169–173. Springer, Heidelberg (2003)
Lingras, P., Hogo, M., Snorek, M.: Interval Set Clustering of Web Users using Modified Kohonen Self-Organizing Maps based on the Properties of Rough Sets. Web Intelligence and Agent Systems: An International Journal 2(3) (2004)
Lingras, P., Yan, R., West, C.: Fuzzy C-Means Clustering of Web Users for Educational Sites. In: Proceedings of Sixteenth Conference of the Canadian Society of Computational Studies of Intelligence. Advances in Artificial Intelligence Series, vol. 2671, pp. 557–562. Springer, Toronto (2003)
MacQueen, J.: Some Methods fir Classification and Analysis of Multivariate Observations. In: Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)
Pawlak, Z.: Rough Sets. International Journal of Information and Computer Sciences 11, 145–172 (1982)
Pawlak, Z.: Rough classification. International Journal of Man-Machine Studies 20, 469–483 (1984)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1992)
Peters, J.F., et al.: Clustering: A rough set approach to constructing information granules. In: Soft Computing and Distributed Processing, Proceedings of 6th International Conference, SCDP 2002, pp. 57–61 (2002)
Polkowski, L., Skowron, A.: Rough Mereology: A New Paradigm for Approximate Reasoning. International Journal of Approximate Reasoning 15(4), 333–365 (1996)
Sharma, S.C., Werner, A.: Improved method of grouping provincewide permanent traffic counters. Transportation Research Record 815, 13–18 (1981)
Skowron, A., Stepaniuk, J.: Information granules in distributed environment. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 357–365. Springer, Heidelberg (1999)
Voges, K.E., Pope, N.K.L.I., Brown, M.R.: Cluster Analysis of Marketing Data: A Comparison of K-Means, Rough Set, and Rough Genetic Approaches. In: Abbas, H.A., Sarker, R.A., Newton, C.S. (eds.) Heuristics and Optimization for Knowledge Discovery, pp. 208–216. Idea Group Publishing, Hershey (2002)
Wall, M.: Galib, A C++ Library of Genetic Components (1993), http://lancet.mit.edu/ga/
Wojna, A.: Analogy-Based Reasoning in Classifier Construction. Transactions of Rough Sets 4, 277–374 (2005)
Yao, Y.Y.: Constructive and algebraic methods of the theory of rough sets. Information Sciences 109, 21–47 (1998)
Yao, Y.Y., Lin, T.Y.: Generalization of rough sets using modal logic. Intelligent Automation and Soft Computing 2(2), 103–120 (1996)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this chapter
Cite this chapter
Lingras, P. (2007). Applications of Rough Set Based K-Means, Kohonen SOM, GA Clustering. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W. (eds) Transactions on Rough Sets VII. Lecture Notes in Computer Science, vol 4400. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71663-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-71663-1_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71662-4
Online ISBN: 978-3-540-71663-1
eBook Packages: Computer ScienceComputer Science (R0)