Nothing Special   »   [go: up one dir, main page]

Skip to main content

Applications of Rough Set Based K-Means, Kohonen SOM, GA Clustering

  • Chapter
Transactions on Rough Sets VII

Part of the book series: Lecture Notes in Computer Science ((TRS,volume 4400))

Abstract

Rough set theory provides an alternative way of representing sets whose exact boundary cannot be described due to incomplete information. Rough sets have been widely used for classification and can be equally beneficial in clustering. The clusters in practical data mining do not necessarily have crisp boundaries. An object may belong to more than one cluster. This paper describes modifications of clustering based on Genetic Algorithms, K-means algorithm, and Kohonen Self-Organizing Maps (SOM). These modifications make it possible to represent clusters as rough sets. Rough clusters are shown to be useful for representing groups of highway sections, Web users, and supermarket customers. The rough clusters are also compared with conventional and fuzzy clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Buckles, B.P., Petry, F.E.: Genetic Algorithms. IEEE Computer Press, Los Alamitos (1994)

    Google Scholar 

  2. Hartigan, J.A., Wong, M.A.: Algorithm AS136: A K-Means Clustering Algorithm. Applied Statistics 28, 100–108 (1979)

    Article  MATH  Google Scholar 

  3. Hirano, S., Tsumoto, S.: Rough Clustering and Its Application to Medicine. Journal of Information Science 124, 125–137 (2000)

    Article  Google Scholar 

  4. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  5. Joshi, A., Krishnapuram, R.: Robust Fuzzy Clustering Methods to Support Web Mining. In: Proceedings of the workshop on Data Mining and Knowledge Discovery, SIGMOD ’98, 15/1-15/8 (1998)

    Google Scholar 

  6. Kohonen, T.: Self-Organization and Associative Memory. Springer, Berlin (1988)

    MATH  Google Scholar 

  7. Lingras, P.: Unsupervised Rough Set Classification using GAs. Journal Of Intelligent Information Systems 16(3), 215–228 (2001)

    Article  MATH  Google Scholar 

  8. Lingras, P.: Rough set clustering for Web mining. In: Proceedings of 2002 IEEE International Conference on Fuzzy Systems, IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

  9. Lingras, P., Adams, G.: Selection of Time-Series for Clustering Supermarket Customers. Technical Report 2002_006, Department of Mathematics and Computing Science, Saint Mary’s University, Halifax, N.S., Canada (2002), http://cs.stmarys.ca/tech_reports/

  10. Lingras, P., West, C.: Interval Set Clustering of Web Users with Rough K-means. Journal of Intelligent Information Systems 23(1), 5–16 (2004)

    Article  MATH  Google Scholar 

  11. Lingras, P., et al.: Clustering Supermarket Customers using Rough Set Based Kohonen Networks. In: Zhong, N., et al. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871, pp. 169–173. Springer, Heidelberg (2003)

    Google Scholar 

  12. Lingras, P., Hogo, M., Snorek, M.: Interval Set Clustering of Web Users using Modified Kohonen Self-Organizing Maps based on the Properties of Rough Sets. Web Intelligence and Agent Systems: An International Journal 2(3) (2004)

    Google Scholar 

  13. Lingras, P., Yan, R., West, C.: Fuzzy C-Means Clustering of Web Users for Educational Sites. In: Proceedings of Sixteenth Conference of the Canadian Society of Computational Studies of Intelligence. Advances in Artificial Intelligence Series, vol. 2671, pp. 557–562. Springer, Toronto (2003)

    Google Scholar 

  14. MacQueen, J.: Some Methods fir Classification and Analysis of Multivariate Observations. In: Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  15. Pawlak, Z.: Rough Sets. International Journal of Information and Computer Sciences 11, 145–172 (1982)

    MathSciNet  Google Scholar 

  16. Pawlak, Z.: Rough classification. International Journal of Man-Machine Studies 20, 469–483 (1984)

    Article  MATH  Google Scholar 

  17. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

  18. Peters, J.F., et al.: Clustering: A rough set approach to constructing information granules. In: Soft Computing and Distributed Processing, Proceedings of 6th International Conference, SCDP 2002, pp. 57–61 (2002)

    Google Scholar 

  19. Polkowski, L., Skowron, A.: Rough Mereology: A New Paradigm for Approximate Reasoning. International Journal of Approximate Reasoning 15(4), 333–365 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sharma, S.C., Werner, A.: Improved method of grouping provincewide permanent traffic counters. Transportation Research Record 815, 13–18 (1981)

    Google Scholar 

  21. Skowron, A., Stepaniuk, J.: Information granules in distributed environment. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 357–365. Springer, Heidelberg (1999)

    Google Scholar 

  22. Voges, K.E., Pope, N.K.L.I., Brown, M.R.: Cluster Analysis of Marketing Data: A Comparison of K-Means, Rough Set, and Rough Genetic Approaches. In: Abbas, H.A., Sarker, R.A., Newton, C.S. (eds.) Heuristics and Optimization for Knowledge Discovery, pp. 208–216. Idea Group Publishing, Hershey (2002)

    Google Scholar 

  23. Wall, M.: Galib, A C++ Library of Genetic Components (1993), http://lancet.mit.edu/ga/

  24. Wojna, A.: Analogy-Based Reasoning in Classifier Construction. Transactions of Rough Sets 4, 277–374 (2005)

    Article  MathSciNet  Google Scholar 

  25. Yao, Y.Y.: Constructive and algebraic methods of the theory of rough sets. Information Sciences 109, 21–47 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Yao, Y.Y., Lin, T.Y.: Generalization of rough sets using modal logic. Intelligent Automation and Soft Computing 2(2), 103–120 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

James F. Peters Andrzej Skowron Victor W. Marek Ewa Orłowska Roman Słowiński Wojciech Ziarko

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Lingras, P. (2007). Applications of Rough Set Based K-Means, Kohonen SOM, GA Clustering. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W. (eds) Transactions on Rough Sets VII. Lecture Notes in Computer Science, vol 4400. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71663-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71663-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71662-4

  • Online ISBN: 978-3-540-71663-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics