Abstract
Definability and approximations are two important notions of the theory of rough sets. In many studies, one is used to define the other. There is a lack of an explicit interpretation of the physical meaning of definability. In this paper, the definability is used as a more primitive notion, interpreted in terms of formulas of a logic language. A set is definable if there is a formula that defines the set, i.e., the set consists of all those elements satisfying the formula. As a derived notion, the lower and upper approximations of a set are two definable sets that approximate the set from below and above, respectively. This formulation may be more natural, bringing new insights into our understanding of rough set approximations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Banerjee, M., Chakraborty, M.K.: Algebras from rough sets. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing, pp. 157–184. Springer, Heidelberg (2004)
Buszkowski, W.: Approximation spaces and definability for incomplete information systems. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 115–122. Springer, Heidelberg (1998)
Grzymala-Busse, J.W.: Incomplete data and generalization of indiscernibility relation, definability, and approximations. In: Ślęzak, D., et al. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 244–253. Springer, Heidelberg (2005)
Hobbs, J.R.: Granularity. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence, pp. 432–435 (1985)
Järvinen, J., Kortelainen, J.: A note on definability in rough set theory. In: De Baets, B., et al. (eds.) Current Issues in Data and Knowledge Engineering, pp. 272–277. Akademicka Oficyna Wydawnicza EXIT, Warsaw (2004)
Kreisel, G., Krivine, J.L.: Elements of Mathematical Logic. North-Holland, Amsterdam (1971)
Kunen, K.: Set Theory: An Introduction to Independence Proofs. North-Holland, Amsterdam (1980)
Mi, J.S., Zhang, W.X.: An axiomatic characterization of a fuzzy generalization of rough sets. Information Sciences 160, 235–249 (2004)
Orlowska, E.: Logical aspects of learning concepts. International Journal of Approximate Reasoning 2, 349–364 (1988)
Pawlak, Z.: Rough Sets, Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
Pawlak, Z., et al.: Rough sets. Communications of the ACM 38, 89–95 (1995)
Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177, 3–27 (2007)
Pawlak, Z., Skowron, A.: Rough sets: some extensions. Information Sciences 177, 28–40 (2007)
Pawlak, Z., Skowron, A.: Rough sets and Boolean reasoning. Information Sciences 177, 41–73 (2007)
Pomykala, J.A.: On definability in the nondeterministic information system. Bulletin of the Polish Academy of Sciences: Mathematics 36, 193–210 (1987)
Smith, E.E.: Concepts and induction. In: Posner, M.I. (ed.) Foundations of Cognitive Science, pp. 501–526. The MIT Press, Cambridge (1989)
Sowa, J.F.: Conceptual Structures, Information Processing in Mind and Machine. Addison-Wesley, Reading (1984)
Van Mechelen, I., et al. (eds.): Categories and Concepts, Theoretical Views and Inductive Data Analysis. Academic Press, New York (1993)
Wasilewska, A.: Definable ses in knowledge representation systems. Bulletin of the Polish Academy of Sciences: Mathematics 35, 629–635 (1987)
Wu, W.Z., Zhang, W.X.: Constructive and axiomatic approaches of fuzzy approximation operators. Information Sciences 159, 233–254 (2004)
Yao, J.T., Yao, Y.Y., Zhao, Y.: Foundations of classification. In: Lin, T.Y., et al. (eds.) Foundations and Novel Approaches in Data Mining, pp. 75–97. Springer, Berlin (2006)
Yao, Y.Y.: A comparative study of formal concept analysis and rough set theory in data analysis. In: Tsumoto, S., et al. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 59–68. Springer, Heidelberg (2004)
Yao, Y.Y.: Constructive and algebraic methods of the theory of rough sets. Information Sciences 109, 21–47 (1998)
Yao, Y.Y.: Relational interpretations of neighborhood operators and rough set approximation operators. Information Sciences 111, 239–259 (1998)
Zhu, W.: Topological approaches to covering rough sets. Information Sciences, in press
Zhu, W., Wang, F.Y.: Reduction and axiomization of covering generalized rough sets. Information Sciences 152, 217–230 (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this chapter
Cite this chapter
Yao, Y. (2007). A Note on Definability and Approximations. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W. (eds) Transactions on Rough Sets VII. Lecture Notes in Computer Science, vol 4400. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71663-1_17
Download citation
DOI: https://doi.org/10.1007/978-3-540-71663-1_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71662-4
Online ISBN: 978-3-540-71663-1
eBook Packages: Computer ScienceComputer Science (R0)