Abstract
Rough set-based rule induction allows easily interpretable descriptions of complex biological systems. Here, we review a number of applications of rough sets to problems in bioinformatics, including cancer classification, gene and protein function prediction, gene regulation, protein-drug interaction and drug resistance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fleischmann, R.D., et al.: Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995)
Berman, H.M., et al.: The protein data bank. Nucleic Acids Research 28, 235–242 (2000)
Schena, M., et al.: Quantitative monitoring of gene expression patterns with a complementary dna microarray. Science 270, 467–470 (1995)
Duggan, D.J., et al.: Expression profiling using cDNA microarrays. Nat. Genet. 21, 10–14 (1999)
Patterson, S.D., Aebersold, R.H.: Proteomics: the first decade and beyond. Nat. Genet. 33(Suppl.), 311–323 (2003)
Kanehisa, M., Bork, P.: Bioinformatics in the post-sequence era. Nat. Genet. 33(Suppl.), 305–310 (2003)
Altschul, S.F., et al.: Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Research 25, 3389–3402 (1997)
Shatkay, H., Feldman, R.: Mining the biomedical literature in the genomic era: an overview. J. Comput. Biol. 10, 821–855 (2003)
Jenssen, T.K., et al.: A literature network of human genes for high-throughput analysis of gene expression. Nat. Genet. 28, 21–28 (2001)
Brazma, A., Krestyaninova, M., Sarkans, U.: Standards for systems biology. Nat. Rev. Genet. 7, 593–605 (2006)
The Gene Ontology Consortium: Gene ontology: tool for the unification of biology. Nature Genetics 25, 25–29 (2000)
Pawlak, Z.: Rough sets. International Journal of Information and Computer Science 11(5), 341–356 (1982)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Series D: System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)
Komorowski, J., et al.: Rough sets: A tutorial. In: Rough Fuzzy Hybridization: A New Trend in Decision-Making, pp. 3–98. Springer, Singapore (1999)
Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Słowiński, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances in Rough Sets Theory. Series D: System Theory, Knowledge Engineering and Problem Solving, vol. 11, pp. 331–362. Kluwer Academic Publishers, Dordrecht (1992)
Skowron, A., Nguyen, H.S.: Boolean reasoning scheme with some applications in data mining. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 107–115. Springer, Heidelberg (1999)
Churchill, G.A.: Fundamentals of experimental design for cDNA microarrays. Nat. Genet. 32(Suppl.), 490–495 (2002)
Quackenbush, J.: Microarray data normalization and transformation. Nat. Genet. 32(Suppl.), 496–501 (2002)
Iyer, V.R., et al.: The transcriptional program in the response of human fibroblasts to serum. Science 283, 83–87 (1999)
Golub, T., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)
Brown, M.P.S., et al.: Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl. Acad. Sci. USA 97(1), 262–267 (2000)
Midelfart, H., et al.: Learning rough set classifiers from gene expression and clinical data. Fundamenta Informaticae 53(2), 155–183 (2002)
Nørsett, K.G., et al.: Gene expression based classification of gastric carcinoma. Cancer Lett. 210, 227–237 (2004)
Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman & Hall, London (1993)
Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982)
Manley, B.F.J.: Randomization, Bootstrap and Monte Carlo Methods in Biology. Chapman & Hall, Boca Raton (2002)
Dennis, J.L., et al.: Markers of adenocarcinoma characteristic of the site of origin: Development of a diagnostic algorithm. Clin. Cancer Res. 11, 3766–3772 (2005)
Hvidsten, T.R., et al.: Predicting gene function from gene expressions and ontologies. In: Altman, R.B., et al. (eds.) Pacific Symposium on Biocomputing, Mauna Lani, Hawai’i, pp. 299–310. World Scientific Publishing, Singapore (2001)
Hvidsten, T.R., Lægreid, A., Komorowski, J.: Learning rule-based models of biological process from gene expression time profiles using gene ontology. Bioinformatics 19, 1116–1123 (2003)
Lægreid, A., et al.: Predicting gene ontology biological process from temporal gene expression patterns. Genome Res. 13, 965–979 (2003)
Eisen, M., et al.: Cluster analysis and display of genome-wide expression pattern. Proc. Natl. Acad. Sci. USA 95(25), 14863–14868 (1998)
Brown, P.O., Botstein, D.: Exploring the new world of the genome with DNA microarrays. Nat. Genet. 21, 33–37 (1999)
Cho, R.J., et al.: Transcriptional regulation and function during the human cell cycle. Nature Genetics 27, 48–54 (2001)
Pilpel, Y., Sudarsanam, P., Church, G.M.: Identifying regulatory networks by combinatorial analysis of promoter elements. Nature genetics 29, 153–159 (2001)
Hvidsten, T.R., et al.: Discovering regulatory binding-site modules using rule-based learning. Genome Res. 15, 856–866 (2005)
Hughes, J.D., et al.: Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J. Mol. Biol. 296, 1205–1214 (2000)
Lee, T.I., et al.: Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002)
Wilczyński, B., et al.: Using local gene expression similarities to discover regulatory binding site modules. Accepted in BMC Bioinformatics (2006)
Andersson, C.R., et al.: Revealing cell cycle control by combining model-based detection of periodic expression with novel cis-regulatory descriptors. Submitted (2006)
Skolnick, J., Fetrow, J.S.: From genes to protein structure and function: Novel applications of computational approaches in the genomic era. Trends Biotechnol 18, 34–39 (2000)
Apweiler, R., et al.: UniProt: the Universal Protein knowledgebase. Nucleic Acids Res. 32, D115–D119 (2004)
Chandonia, J.-M., Brenner, S.E.: The impact of structural genomics: Expectations and outcomes. Science 311, 347–351 (2006)
Tress, M., et al.: Assessment of predictions submitted for the CASP6 comparative modeling category. Proteins 61(Suppl. 7), 27–45 (2005)
Zhang, C., Kim, S.-H.: Overview of structural genomics: from structure to function. Curr. Opin. Chem. Biol. 7, 28–32 (2003)
Hvidsten, T.R., et al.: A novel approach to fold recognition using sequence-derived properties from sets of structurally similar local fragments of proteins. Bioinformatics 19(Suppl. 2), II81–II91 (2003)
Pazos, F., Sternberg, M.J.E.: Automated prediction of protein function and detection of functional sites from structure. Proc. Natl. Acad. Sci. USA 101, 14754–14759 (2004)
Orengo, C.A., Todd, A.E., Thornton, J.M.: From protein structure to function. Curr. Opin. Struct. Biol. 9, 374–382 (1999)
Laskowski, R.A., Watson, J.D., Thornton, J.M.: ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res. 33, W89–W93 (2005)
Pal, D., Eisenberg, D.: Inference of protein function from protein structure. Structure 13, 121–130 (2005)
Hvidsten, T.R., et al.: High through-put protein function prediction using local substructures. Submitted (2006)
Terfloth, L.: Drug design. In: Gasteiger, J., Engel, T. (eds.) Chemoinformatics, pp. 497–618. Wiley-VCH, Weinheim (2003)
Wikberg, J.E.S., Maris, L., Peteris, P.: Proteochemometrics: A tool for modelling the molecular interaction space. In: Kubinyi, H., Müler, G. (eds.) Chemogenomics in Drug Discovery - A Medicinal Chemistry Perspective, pp. 289–309. Wiley-VCH, Weinheim (2004)
Strömbergsson, H., et al.: Rough set-based proteochemometrics modeling of G-protein-coupled receptor-ligand interactions. Proteins 63, 24–34 (2006)
Strömbergsson, H., et al.: Generalized modeling of enzyme-ligand interactions using proteochemometrics and local protein substructures. Accepted to Proteins (2006)
Kontijevskis, A., Wikberg, J.E.S., Komorowski, J.: Computational proteomics analysis of HIV-1 protease interactome. Submitted (2006)
Kierczak, M., Rudnicki, W.R., Komorowski, J.: Construction of rough set-based classifiers for predicting HIV resistance to non-nucleoside reverse transcriptase inhibitors. Manuscript (2006)
Bazan, J.G., Skowron, A., Synak, P.: Dynamic reducts as a tool for extracting laws from decision tables. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS, vol. 869, pp. 346–355. Springer, Heidelberg (1994)
Vinterbo, S., Øhrn, A.: Minimal approximate hitting sets and rule templates. International Journal of Approximate Reasoning 25(2), 123–143 (2000)
Ågotnes, T., Komorowski, J., Løken, T.: Taming large rule models in rough set approaches. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 193–203. Springer, Heidelberg (1999)
Makosa, E.: Rule tuning. Master thesis. The Linnaeus Centre for Bioinformatics, Uppsala University (2005)
Düntsch, I.: Statistical evaluation of rough set dependency analysis. Int. J. Human-Computer Studies 46, 589–604 (1997)
Düntsch, I., Gediga, G.: Uncertainty measures of rough set prediction. Artificial Intelligence 106, 109–137 (1998)
Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)
Skowron, A.: Synthesis of adaptive decision systems from experimental data. In: Aamodt, A., Komorowski, J. (eds.) Fifth Scandinavian Conference on Artificial Intelligence, Trondheim, Norway, pp. 220–238. IOS Press, Amsterdam (1995)
Komorowski, J., Øhrn, A., Skowron, A.: ROSETTA rough sets. In: Klösgen, W., Żytkow, J. (eds.) Handbook of Data Mining and Knowledge Discovery, pp. 554–559. Oxford University Press, Oxford (2002)
Żytkow, J.M., Rauch, J. (eds.): PKDD 1999. LNCS (LNAI), vol. 1704. Springer, Heidelberg (1999)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this chapter
Cite this chapter
Hvidsten, T.R., Komorowski, J. (2007). Rough Sets in Bioinformatics. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W. (eds) Transactions on Rough Sets VII. Lecture Notes in Computer Science, vol 4400. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71663-1_14
Download citation
DOI: https://doi.org/10.1007/978-3-540-71663-1_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71662-4
Online ISBN: 978-3-540-71663-1
eBook Packages: Computer ScienceComputer Science (R0)