Nothing Special   »   [go: up one dir, main page]

Skip to main content

Rough Sets in Bioinformatics

  • Chapter
Transactions on Rough Sets VII

Part of the book series: Lecture Notes in Computer Science ((TRS,volume 4400))

Abstract

Rough set-based rule induction allows easily interpretable descriptions of complex biological systems. Here, we review a number of applications of rough sets to problems in bioinformatics, including cancer classification, gene and protein function prediction, gene regulation, protein-drug interaction and drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fleischmann, R.D., et al.: Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995)

    Article  Google Scholar 

  2. Berman, H.M., et al.: The protein data bank. Nucleic Acids Research 28, 235–242 (2000)

    Article  Google Scholar 

  3. Schena, M., et al.: Quantitative monitoring of gene expression patterns with a complementary dna microarray. Science 270, 467–470 (1995)

    Article  Google Scholar 

  4. Duggan, D.J., et al.: Expression profiling using cDNA microarrays. Nat. Genet. 21, 10–14 (1999)

    Article  Google Scholar 

  5. Patterson, S.D., Aebersold, R.H.: Proteomics: the first decade and beyond. Nat. Genet. 33(Suppl.), 311–323 (2003)

    Article  Google Scholar 

  6. Kanehisa, M., Bork, P.: Bioinformatics in the post-sequence era. Nat. Genet. 33(Suppl.), 305–310 (2003)

    Article  Google Scholar 

  7. Altschul, S.F., et al.: Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Research 25, 3389–3402 (1997)

    Article  Google Scholar 

  8. Shatkay, H., Feldman, R.: Mining the biomedical literature in the genomic era: an overview. J. Comput. Biol. 10, 821–855 (2003)

    Article  Google Scholar 

  9. Jenssen, T.K., et al.: A literature network of human genes for high-throughput analysis of gene expression. Nat. Genet. 28, 21–28 (2001)

    Article  Google Scholar 

  10. Brazma, A., Krestyaninova, M., Sarkans, U.: Standards for systems biology. Nat. Rev. Genet. 7, 593–605 (2006)

    Article  Google Scholar 

  11. The Gene Ontology Consortium: Gene ontology: tool for the unification of biology. Nature Genetics 25, 25–29 (2000)

    Article  Google Scholar 

  12. Pawlak, Z.: Rough sets. International Journal of Information and Computer Science 11(5), 341–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Series D: System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  14. Komorowski, J., et al.: Rough sets: A tutorial. In: Rough Fuzzy Hybridization: A New Trend in Decision-Making, pp. 3–98. Springer, Singapore (1999)

    Google Scholar 

  15. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Słowiński, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances in Rough Sets Theory. Series D: System Theory, Knowledge Engineering and Problem Solving, vol. 11, pp. 331–362. Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

  16. Skowron, A., Nguyen, H.S.: Boolean reasoning scheme with some applications in data mining. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 107–115. Springer, Heidelberg (1999)

    Google Scholar 

  17. Churchill, G.A.: Fundamentals of experimental design for cDNA microarrays. Nat. Genet. 32(Suppl.), 490–495 (2002)

    Article  Google Scholar 

  18. Quackenbush, J.: Microarray data normalization and transformation. Nat. Genet. 32(Suppl.), 496–501 (2002)

    Article  Google Scholar 

  19. Iyer, V.R., et al.: The transcriptional program in the response of human fibroblasts to serum. Science 283, 83–87 (1999)

    Article  Google Scholar 

  20. Golub, T., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  21. Brown, M.P.S., et al.: Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl. Acad. Sci. USA 97(1), 262–267 (2000)

    Article  Google Scholar 

  22. Midelfart, H., et al.: Learning rough set classifiers from gene expression and clinical data. Fundamenta Informaticae 53(2), 155–183 (2002)

    MathSciNet  Google Scholar 

  23. Nørsett, K.G., et al.: Gene expression based classification of gastric carcinoma. Cancer Lett. 210, 227–237 (2004)

    Article  Google Scholar 

  24. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman & Hall, London (1993)

    MATH  Google Scholar 

  25. Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982)

    Google Scholar 

  26. Manley, B.F.J.: Randomization, Bootstrap and Monte Carlo Methods in Biology. Chapman & Hall, Boca Raton (2002)

    Google Scholar 

  27. Dennis, J.L., et al.: Markers of adenocarcinoma characteristic of the site of origin: Development of a diagnostic algorithm. Clin. Cancer Res. 11, 3766–3772 (2005)

    Article  Google Scholar 

  28. Hvidsten, T.R., et al.: Predicting gene function from gene expressions and ontologies. In: Altman, R.B., et al. (eds.) Pacific Symposium on Biocomputing, Mauna Lani, Hawai’i, pp. 299–310. World Scientific Publishing, Singapore (2001)

    Google Scholar 

  29. Hvidsten, T.R., Lægreid, A., Komorowski, J.: Learning rule-based models of biological process from gene expression time profiles using gene ontology. Bioinformatics 19, 1116–1123 (2003)

    Article  Google Scholar 

  30. Lægreid, A., et al.: Predicting gene ontology biological process from temporal gene expression patterns. Genome Res. 13, 965–979 (2003)

    Article  Google Scholar 

  31. Eisen, M., et al.: Cluster analysis and display of genome-wide expression pattern. Proc. Natl. Acad. Sci. USA 95(25), 14863–14868 (1998)

    Article  Google Scholar 

  32. Brown, P.O., Botstein, D.: Exploring the new world of the genome with DNA microarrays. Nat. Genet. 21, 33–37 (1999)

    Article  Google Scholar 

  33. Cho, R.J., et al.: Transcriptional regulation and function during the human cell cycle. Nature Genetics 27, 48–54 (2001)

    Google Scholar 

  34. Pilpel, Y., Sudarsanam, P., Church, G.M.: Identifying regulatory networks by combinatorial analysis of promoter elements. Nature genetics 29, 153–159 (2001)

    Article  Google Scholar 

  35. Hvidsten, T.R., et al.: Discovering regulatory binding-site modules using rule-based learning. Genome Res. 15, 856–866 (2005)

    Article  Google Scholar 

  36. Hughes, J.D., et al.: Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J. Mol. Biol. 296, 1205–1214 (2000)

    Article  Google Scholar 

  37. Lee, T.I., et al.: Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002)

    Article  Google Scholar 

  38. Wilczyński, B., et al.: Using local gene expression similarities to discover regulatory binding site modules. Accepted in BMC Bioinformatics (2006)

    Google Scholar 

  39. Andersson, C.R., et al.: Revealing cell cycle control by combining model-based detection of periodic expression with novel cis-regulatory descriptors. Submitted (2006)

    Google Scholar 

  40. Skolnick, J., Fetrow, J.S.: From genes to protein structure and function: Novel applications of computational approaches in the genomic era. Trends Biotechnol 18, 34–39 (2000)

    Article  Google Scholar 

  41. Apweiler, R., et al.: UniProt: the Universal Protein knowledgebase. Nucleic Acids Res. 32, D115–D119 (2004)

    Article  Google Scholar 

  42. Chandonia, J.-M., Brenner, S.E.: The impact of structural genomics: Expectations and outcomes. Science 311, 347–351 (2006)

    Article  Google Scholar 

  43. Tress, M., et al.: Assessment of predictions submitted for the CASP6 comparative modeling category. Proteins 61(Suppl. 7), 27–45 (2005)

    Article  Google Scholar 

  44. Zhang, C., Kim, S.-H.: Overview of structural genomics: from structure to function. Curr. Opin. Chem. Biol. 7, 28–32 (2003)

    Article  Google Scholar 

  45. Hvidsten, T.R., et al.: A novel approach to fold recognition using sequence-derived properties from sets of structurally similar local fragments of proteins. Bioinformatics 19(Suppl. 2), II81–II91 (2003)

    Google Scholar 

  46. Pazos, F., Sternberg, M.J.E.: Automated prediction of protein function and detection of functional sites from structure. Proc. Natl. Acad. Sci. USA 101, 14754–14759 (2004)

    Article  Google Scholar 

  47. Orengo, C.A., Todd, A.E., Thornton, J.M.: From protein structure to function. Curr. Opin. Struct. Biol. 9, 374–382 (1999)

    Article  Google Scholar 

  48. Laskowski, R.A., Watson, J.D., Thornton, J.M.: ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res. 33, W89–W93 (2005)

    Article  Google Scholar 

  49. Pal, D., Eisenberg, D.: Inference of protein function from protein structure. Structure 13, 121–130 (2005)

    Article  Google Scholar 

  50. Hvidsten, T.R., et al.: High through-put protein function prediction using local substructures. Submitted (2006)

    Google Scholar 

  51. Terfloth, L.: Drug design. In: Gasteiger, J., Engel, T. (eds.) Chemoinformatics, pp. 497–618. Wiley-VCH, Weinheim (2003)

    Google Scholar 

  52. Wikberg, J.E.S., Maris, L., Peteris, P.: Proteochemometrics: A tool for modelling the molecular interaction space. In: Kubinyi, H., Müler, G. (eds.) Chemogenomics in Drug Discovery - A Medicinal Chemistry Perspective, pp. 289–309. Wiley-VCH, Weinheim (2004)

    Google Scholar 

  53. Strömbergsson, H., et al.: Rough set-based proteochemometrics modeling of G-protein-coupled receptor-ligand interactions. Proteins 63, 24–34 (2006)

    Article  Google Scholar 

  54. Strömbergsson, H., et al.: Generalized modeling of enzyme-ligand interactions using proteochemometrics and local protein substructures. Accepted to Proteins (2006)

    Google Scholar 

  55. Kontijevskis, A., Wikberg, J.E.S., Komorowski, J.: Computational proteomics analysis of HIV-1 protease interactome. Submitted (2006)

    Google Scholar 

  56. Kierczak, M., Rudnicki, W.R., Komorowski, J.: Construction of rough set-based classifiers for predicting HIV resistance to non-nucleoside reverse transcriptase inhibitors. Manuscript (2006)

    Google Scholar 

  57. Bazan, J.G., Skowron, A., Synak, P.: Dynamic reducts as a tool for extracting laws from decision tables. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS, vol. 869, pp. 346–355. Springer, Heidelberg (1994)

    Google Scholar 

  58. Vinterbo, S., Øhrn, A.: Minimal approximate hitting sets and rule templates. International Journal of Approximate Reasoning 25(2), 123–143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  59. Ågotnes, T., Komorowski, J., Løken, T.: Taming large rule models in rough set approaches. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 193–203. Springer, Heidelberg (1999)

    Google Scholar 

  60. Makosa, E.: Rule tuning. Master thesis. The Linnaeus Centre for Bioinformatics, Uppsala University (2005)

    Google Scholar 

  61. Düntsch, I.: Statistical evaluation of rough set dependency analysis. Int. J. Human-Computer Studies 46, 589–604 (1997)

    Article  Google Scholar 

  62. Düntsch, I., Gediga, G.: Uncertainty measures of rough set prediction. Artificial Intelligence 106, 109–137 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  63. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  64. Skowron, A.: Synthesis of adaptive decision systems from experimental data. In: Aamodt, A., Komorowski, J. (eds.) Fifth Scandinavian Conference on Artificial Intelligence, Trondheim, Norway, pp. 220–238. IOS Press, Amsterdam (1995)

    Google Scholar 

  65. Komorowski, J., Øhrn, A., Skowron, A.: ROSETTA rough sets. In: Klösgen, W., Żytkow, J. (eds.) Handbook of Data Mining and Knowledge Discovery, pp. 554–559. Oxford University Press, Oxford (2002)

    Google Scholar 

  66. Żytkow, J.M., Rauch, J. (eds.): PKDD 1999. LNCS (LNAI), vol. 1704. Springer, Heidelberg (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

James F. Peters Andrzej Skowron Victor W. Marek Ewa Orłowska Roman Słowiński Wojciech Ziarko

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Hvidsten, T.R., Komorowski, J. (2007). Rough Sets in Bioinformatics. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W. (eds) Transactions on Rough Sets VII. Lecture Notes in Computer Science, vol 4400. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71663-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71663-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71662-4

  • Online ISBN: 978-3-540-71663-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics