Nothing Special   »   [go: up one dir, main page]

Skip to main content

Application of Rough Sets in Pattern Recognition

  • Chapter
Transactions on Rough Sets VII

Part of the book series: Lecture Notes in Computer Science ((TRS,volume 4400))

Abstract

This article provides an overview of recent literature on some tasks of pattern recognition using rough sets and its hybridization with other soft computing paradigms. Rough set theory is an established tool for dealing with imprecision, noise, and uncertainty in data. In this article we will focus on two recent applications using rough sets; viz., feature selection in high dimensional gene expression data, and collaborative clustering. The experimental results demonstrate that the incorporation of rough set improves the performance of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pawlak, Z.: Rough Sets, Theoretical Aspects of Reasoning about Data. Kluwer Academic, Dordrecht (1991)

    MATH  Google Scholar 

  2. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Slowiński, R. (ed.) Intelligent Decision Support, Handbook of Applications and Advances of the Rough Sets Theory, pp. 331–362. Kluwer Academic, Dordrecht (1992)

    Google Scholar 

  3. Wroblewski, J.: Finding minimal reducts using genetic algorithms. Technical Report 16/95, Warsaw Institute of Technology - Institute of Computer Science, Poland (1995)

    Google Scholar 

  4. Bjorvand, A.T.: ‘Rough Enough’ – A system supporting the rough sets approach. In: Proceedings of the Sixth Scandinavian Conference on Artificial Intelligence, Helsinki, Finland, pp. 290–291 (1997)

    Google Scholar 

  5. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley, London (2001)

    MATH  Google Scholar 

  6. Zadeh, L.A.: Fuzzy logic, neural networks, and soft computing. Communications of the ACM 37, 77–84 (1994)

    Article  Google Scholar 

  7. Mitra, S., Acharya, T.: Data Mining: Multimedia, Soft Computing, and Bioinformatics. John Wiley, New York (2003)

    Google Scholar 

  8. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    MATH  Google Scholar 

  9. Lingras, P., West, C.: Interval set clustering of Web users with rough k-means. Technical Report No. 2002-002, Dept. of Mathematics and Computer Science, St. Mary’s University, Halifax, Canada (2002)

    Google Scholar 

  10. Pedrycz, W.: Collaborative fuzzy clustering. Pattern Recognition Letters 23, 1675–1686 (2002)

    Article  MATH  Google Scholar 

  11. Deb, K., et al.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

  12. Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research 5, 1205–1224 (2004)

    MathSciNet  Google Scholar 

  13. Banerjee, M., Mitra, S., Banka, H.: Evolutionary-rough feature selection in gene expression data. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews (to appear)

    Google Scholar 

  14. Tou, J.T., Gonzalez, R.C.: Pattern Recognition Principles. Addison-Wesley, London (1974)

    MATH  Google Scholar 

  15. Mitra, S., Banka, H., Pedrycz, W.: Rough-fuzzy collaborative clustering. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 36, 795–805 (2006)

    Article  Google Scholar 

  16. Mitra, S.: An evolutionary rough partitive clustering. Pattern Recognition Letters 25, 1439–1449 (2004)

    Article  Google Scholar 

  17. Special Issue on Bioinformatics. IEEE Computer 35 (2002)

    Google Scholar 

  18. Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence. Addison-Wesley Longman, New York (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

James F. Peters Andrzej Skowron Victor W. Marek Ewa Orłowska Roman Słowiński Wojciech Ziarko

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Mitra, S., Banka, H. (2007). Application of Rough Sets in Pattern Recognition. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W. (eds) Transactions on Rough Sets VII. Lecture Notes in Computer Science, vol 4400. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71663-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71663-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71662-4

  • Online ISBN: 978-3-540-71663-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics