Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2))

Included in the following conference series:

Abstract

In this paper, we propose a Second Order Cone Programming representable Mahalanobis Ellipsoidal Learning Machine (SOCP-MELM) for One Class Classification (OCC). We propose to utilize the covariance matrix and thus the Mahalanobis distance to replace the Euclidean distance in standard Support Vector Data Description (SVDD). Consequently, we modify and rewrite the SVDD as a standard SOCP problem and then solve it directly in its primal form via interior point methods in polynomial time. By introducing a specified uncertainty model and using the chebyshev inequality, we propose a robust form of SOCP-MELM. Finally, we validate the proposed method using real world benchmark datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Scholkopf, B., Smola, A.: Learning with Kernels, 1st edn. MIT Press, Cambridge, MA (2002)

    Google Scholar 

  2. Tax, D. One-class Classification: Concept-learning in the Absence of Counter-Examples. PhD Thesis, Delft University of Technology (2001)

    Google Scholar 

  3. Scholkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R.: Estimating the Support of a High Dimensional Distribution. Neural Computation 13(7), 1443–1471 (2001)

    Article  Google Scholar 

  4. Tax, D., Duin, R.: Support Vector Domain Description. Pattern Recognition Letters 20(14), 1191–1199 (1999)

    Article  Google Scholar 

  5. Tax, D., Juszczak, P.: Kernel Whitening for One-Class Classification. International Journal of Pattern Recognition and Artificial Intelligence 17(3), 333–347 (2003)

    Article  Google Scholar 

  6. Lanckriet, G., Ghaoui, L.E., Jodan, M.: Robust Novelty Detection with Single-Class MPM. In: Becker, S., Thrun, S., Obermayor, K. (eds.) Advances in Neural Information Processing Systems, vol. 15, MIT Press, Cambridge, MA (2003)

    Google Scholar 

  7. Tsang, I.W., Kwok, J.T., Li, S.: Learning the Kernel in Mahalanobis One-class Support Vector Machines. In: Proceeding of IJCNN 2006 Conference. Vancouver, BC, Canada, pp. 1169–1175 (2006)

    Google Scholar 

  8. Abe, S.: Training of Support Vector Machines with Mahalanobis Kernels. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 571–576. Springer, Heidelberg (2005)

    Google Scholar 

  9. Wang, J., Kwok, J.T., Shen, H.C., Quan, L.: Data-Dependent Kernels for High-Dimensional Data Classification. In: Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, pp. 102–107 (2005)

    Google Scholar 

  10. Wei, X.K., Huang, G.B., Li, Y.H.: Mahalanobis Ellipsoidal Learning Machine for One Class Classification. Manuscript (2007)

    Google Scholar 

  11. Wei, X.K., Huang, G.B., Li, Y.H.: A New One Class Mahalanobis Hyperplane Learning Machine based on QP and SVD. Manuscript (2007)

    Google Scholar 

  12. Chapelle, O.: Training a Support Vector Machine in the Primal. Neural Computation 19, 1155–1178 (2007)

    Article  MATH  Google Scholar 

  13. Ruiz, A., Lopez-de-Teruel, P.E.: Nonlinear Kernel-based Statistical Pattern Analysis. IEEE Transactions on Neural Networks 2(1), 16–32 (2001)

    Article  Google Scholar 

  14. Löfberg, J.: YALMIP: A Toolbox for Modeling and Optimization in MATLAB. In: Proceedings of the CACSD Conference, Taipei, Taiwan (2004), Available at: http://control.ee.ethz.ch/~joloef/yalmip.php

  15. Meyer, Carl D.: Matrix Analysis and Applied Linear Algebra. 1st edn. SIAM, Philadelphia, PA (2000)

    Google Scholar 

  16. Alizadeh, F., Goldfarb, D.: Second-order Cone Programming. Mathematical Programming 95, 3–51 (2003)

    Article  MATH  Google Scholar 

  17. Lobo, M., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of Second-order Cone Programming. Linear Algebra and its Applications 284, 193–228 (1998)

    Article  MATH  Google Scholar 

  18. Blake, C., Keogh, E., Merz, C.J.: UCI Repository of Machine Learning Databases, University of California, Irvine, CA. (1998), Available at http://www.ics.uci.edu/~mlearn/ML-Repository.html

  19. Sturm, J.F.: Using SEDUMI 1.02, A MATLAB toolbox for Optimization over Symmetric Cones. Optimization Methods and Software, 11–12, 625–653 (1999)

    Google Scholar 

  20. Liu, Y., Zheng, Y.-F.: Maximum Enclosing and Maximum Excluding Machine for Pattern Description and Discrimination. In: Proceeding of ICPR 2006 Conference, Hongkong (2006)

    Google Scholar 

  21. Li, Y.-H., Wei, X.-K., Liu, J.-X.: Engineering Applications of Support Vector Machines, 1st edn. China Weapon Industry Press, Beijing (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Laurent Heutte Marco Loog

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wei, X., Li, Y., Feng, Y., Huang, G. (2007). Solving Mahalanobis Ellipsoidal Learning Machine Via Second Order Cone Programming. In: Huang, DS., Heutte, L., Loog, M. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Contemporary Intelligent Computing Techniques. ICIC 2007. Communications in Computer and Information Science, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74282-1_133

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74282-1_133

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74281-4

  • Online ISBN: 978-3-540-74282-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics