Nothing Special   »   [go: up one dir, main page]

Skip to main content

Robust MCD-Based Backpropagation Learning Algorithm

  • Conference paper
Artificial Intelligence and Soft Computing – ICAISC 2008 (ICAISC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5097))

Included in the following conference series:

Abstract

Training data containing outliers are often a problem for supervised neural networks learning methods that may not always come up with acceptable performance. In this paper a new, robust to outliers learning algorithm, employing the concept of initial data analysis by the MCD (minimum covariance determinant) estimator, is proposed. Results of implementation and simulation of nets trained with the new algorithm and the traditional backpropagation (BP) algorithm and robust Lmls are presented and compared. The better performance and robustness against outliers for the new method are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hornik, K., Stinchconbe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2, 359–366 (1989)

    Article  Google Scholar 

  2. Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A.: Robust Statistics the Approach Based on Influence Functions. John Wiley & Sons, New York (1986)

    MATH  Google Scholar 

  3. Huber, P.J.: Robust Statistics. Wiley, New York (1981)

    MATH  Google Scholar 

  4. Charalambous, C.: Conjugate gradient algorithm for efficient training of artificial neural networks. IEE Proceedings-G 139(3), 301–310 (1992)

    Google Scholar 

  5. Chen, D.S., Jain, R.C.: A robust back propagation learning algorithm for function approximation. IEEE Transactions on Neural Networks 5, 467–479 (1994)

    Article  Google Scholar 

  6. Chuang, C., Su, S., Hsiao, C.: The Annealing Robust Backpropagation (ARBP) Learning Algorithm. IEEE Transactions on Neural Networks 11, 1067–1076 (2000)

    Article  Google Scholar 

  7. Chuang, C.C., Jeng, J.T., Lin, P.T.: Annealing robust radial basis function networks for function approximation with outliers. Neurocomputing 56, 123–139 (2004)

    Article  Google Scholar 

  8. David, V., Sanchez, A.: Robustization of a learning method for RBF networks. Neurocomputing 9, 85–94 (1995)

    Article  Google Scholar 

  9. Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design. PWS Publishing, Boston (1996)

    Google Scholar 

  10. Liano, K.: Robust error measure for supervised neural network learning with outliers. IEEE Transactions on Neural Networks 7, 246–250 (1996)

    Article  Google Scholar 

  11. Mili, L., Cheniae, M., Vichare, N.S., Rousseeuw, P.J.: Robust State Estimation Based on Projection Statistics. IEEE Transactions on Power Systems 11(2) (May 1996)

    Google Scholar 

  12. Olive, D.J., Hawkins, D.M.: Robustifying Robust Estimators, N.Y (2007)

    Google Scholar 

  13. Pernia-Espinoza, A.V., Ordieres-Mere, J.B., Martinez-de-Pison, F.J., Gonzalez-Marcos, A.: TAO-robust backpropagation learning algorithm. Neural Networks 18, 191–204 (2005)

    Article  Google Scholar 

  14. Rousseeuw, P.J.: Least median of squares regression. Journal of the American Statistical Association 79, 871–880 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rousseeuw, P.J., Van Driessen, K.: A Fast Algorithm for the Minimum Covariance Determinant Estimator. Technometrics 41, 212–223 (1999)

    Article  Google Scholar 

  16. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Parallel Distribution Processing: Explorations in the Microstructures of Cignition. MIT Press, Cambridge (1986)

    Google Scholar 

  17. Rusiecki, A.L.: Robust Learning Algorithm with the Variable Learning Rate, In: ICAISC 2006, Artificial Intelligence and Soft Computing, pp. 83-90, Warszawa 2006 (2006)

    Google Scholar 

  18. Rusiecki, A.L.: Robust LTS Backpropagation Learning Algorithm. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 102–109. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Leszek Rutkowski Ryszard Tadeusiewicz Lotfi A. Zadeh Jacek M. Zurada

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rusiecki, A. (2008). Robust MCD-Based Backpropagation Learning Algorithm. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2008. ICAISC 2008. Lecture Notes in Computer Science(), vol 5097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69731-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69731-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69572-1

  • Online ISBN: 978-3-540-69731-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics