Abstract
An increasing use of three dimensional point clouds for building reconstruction is being driven by the popularity of Airborne Laser Scanning (ALS). Laser scanning data provides rapid and accurate elevation models of buildings, forest and terrain surface. Though the captured data contains X, Y, and Z coordinates, the data volume is huge and does not provide any building information. The challenge is to covert the point clouds into CAD-type models containing vertical walls, roof planes and terrain which can be rapidly displayed from any 3D viewpoint. An alternative method was developed to locate building blocks and identify the roof structures with the use of the Delaunay Triangulation and its dual Voronoi diagram and simulated data was used to illustrate the algorithm. This paper shows the implementation of the method using real world ALS data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ackermann, F. (1999). “Airborne laser scanning - present status and future expectations”, ISPRS Journal of Photogrammetry & Remote Sensing, 54(1): p.64–67.
Brenner, C. and Haala, N. (1998) Rapid acquisition of virtual reality city models from multiple data sources. Int. Arch. Photogrammetry Remote Sensing, 32 Part 5. Chikatsu, H. and Shimizu, E. p.323-330
Brenner, C.(1999) “Interactive Modelling Tools for 3D Building Reconstruction.” Fritsch, D. & Spiller, R. (ed.) Photogrammetric Week ‘99’, p.23-34
Brunn A. and Weidner, U. (1997) “Discriminating building and vegetation areas within digital surface models.” Technical report, Institute fur Photogrammetrie, Bonn, Germany.
Charlesworth, H.A.K., Langenberg, C.W. and Ramsden, J. (1975). “Determining axes, axial places and sections of macroscopic folds using computer based methods”. Canadian Journal Earth Science, 13, p.54-65.
Forlani, G.; Nardinocchi, C.; Scaioni, M. & Zingaretti, P. (2003) “Building reconstruction and visualization from LIDAR data” ISPRS International Workshop WG V/4 & INTCOM III/V,Vision Techniques for digital architectural and archaeological archives, p. 151-156
Rottensteiner, F. and Briese, C. (2002) “Automatic Generation of Building Models from LIDAR Data and the Integration of Aerial Images” In Maas, H.; Vosselman, G. & Streilein, A. (ed.) Proceedings of the ISPRS working group III/3 workshop ‘3-D reconstruction from airborne laserscanner and InSAR data, Institute of Photogrammetry and Remote Sensing Dresden University of Technology, 34 Session IV
Rottensteiner, F. and Briese, C. (2003) “Automatic generation of building models from LIDAR data and the integration of aerial images.” In H.-G. Maas, G. Vosselman, and A. Streilein, editors, Proceedings of the ISPRS working group III/3 workshop ‘3-D reconstruction from airborne laserscanner and InSAR data’, volume 34 Session IV, Dresden, Germany, Institute of Photogrammetry and Remote Sensing Dresden University of Technology.
Rottensteiner, F., Trinder, J., Clode, S. and Kubik, K. (2007) “Building Detection by Fusion of Airborne Laser Scanner Data and Multi-spectral Images: Performance Evaluation and Sensitivity Analysis” ISPRS Journal of Photogrammetry & Remote Sensing, 62, p. 135-149
Sohn, G. and Dowman, I., (2003). “Building extraction using lidar DEMS and IKONOS images.” In H.-G. Maas, G. Vosselman, and A. Streilein, eds., Proceedings of the ISPRS working group III/3 workshop ‘3-D reconstruction from airborne laserscanner and InSAR data’, volume 34 Session IV. Institute of Photogrammetry and Remote Sensing Dresden University of Technology, Dresden, Germany.
Sohn, G. and Dowman, I. J., (2004). “Extraction of buildings from high resolution satellite data and LIDAR”, Proceedings of ISPRS 20th Congress WGIII/4 Automated Object Extraction. Istanbul, Turkey. p.345-355.
Suveg, I. and Vosselman, G., (2001). “3D Building Reconstruction by Map Based Generation and Evaluation of Hypotheses.” BMVC01.
Suveg, I. and Vosselman, G., (2004). “Reconstruction of 3D building models from aerial images and maps.” ISPRS Journal of Photogrammetry & Remote Sensing, 58(3): p.202–224.
Tse, R. and Gold, C., (2001). “Terrain, dinosaurs and cadastres -options for three-dimension modelling.” In C. Lemmen and P. van Oosterom, eds., Proceedings: International Workshop on ”3D Cadastres, Delft, The Netherlands. P.243–257.
Tse, R. and Gold, C., (2004). “TIN meets CAD - extending the TIN concept in GIS”. Future Generation Computer Systems (Geocomputation), 20(7) p.1171–1184.
Tse, R., Gold, C., and Kidner, D., (2007a) “3D City Modelling from LIDAR Data”. Proceedings of Lecture Notes in Geoinformation and Cartography, Delft, The Netherlands. p.161-175.
Tse, R., Gold, C., and Kidner, D., (2007b) “Building Reconstruction Using LIDAR Data” Proceedings of Dynamic and Multi-dimensional GIS 2007, Urmchi, China p.121-126.
Vosselman, G. (1999) “Building Reconstruction Using Planar Faces in Very High Density Height Data” International Archives of Photogrammetry and Remote Sensing, 32, part 3/2W5 , p. 87-92
Vosselman, G. and Dijkman, S., (2001). “3D building model reconstruction from point clouds and ground plans.” Proceedings of International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, volume 34, part 3/W4,. Annapolis, MA, USA. p. 37–43.
Vosselman, G., (2003). “3D reconstruction of roads and trees for city modelling.” In H.-G. Maas, G. Vosselman, and A. Streilein, eds., Proceedings of the ISPRS working group III/3 workshop ‘3-D reconstruction from airborne laserscanner and InSAR data, volume 34, Part 3/W13. Institute of Photogrammetry and Remote Sensing Dresden University of Technology, Dresden, Germany.
Wang, Z. & Schenk, T. (2000) “Building Extraction and Reconstruction from LIDAR Data”, In proceedings of IAPRS, July, 33, part B3, p. 958-964
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tse, R.O., Gold, C., Kidner, D. (2008). Implementation of Building Reconstruction Algorithm Using Real World LIDAR Data. In: Ruas, A., Gold, C. (eds) Headway in Spatial Data Handling. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68566-1_17
Download citation
DOI: https://doi.org/10.1007/978-3-540-68566-1_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68565-4
Online ISBN: 978-3-540-68566-1
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)