Nothing Special   »   [go: up one dir, main page]

Skip to main content

Zero-Knowledge Proofs of Possession of Digital Signatures and Its Applications

  • Conference paper
Information and Communication Security (ICICS 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1726))

Included in the following conference series:

Abstract

Demonstrating in zero-knowledge the possession of digital signatures has many cryptographic applications such as anonymous authentication, identity escrow, publicly verifiable secret sharing and group signature. This paper presents a general construction of zero-knowledge proof of possession of digital signatures. An implementation is shown for discrete logarithm settings. It includes protocols of proving exponentiation and modulo operators, which are the most interesting operators in digital signatures. The proposed construction is applicable for ElGamal signature scheme and its variations. The construction also works for the RSA signature scheme. In discrete logarithm settings, our technique is O(l) times more efficient than previously known methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  2. Brands, S.: Untraceable off-line cash based on the representation problem, Technical Report CS-R9323, Centrum voor Wiskunde en Informatica (April 1993)

    Google Scholar 

  3. Brands, S.: Rapid Demonstration of Linear Relations Connected by Boolean Operators. In: Pelillo, M., Hancock, E.R. (eds.) EMMCVPR 1997. LNCS, vol. 1223, pp. 318–333. Springer, Heidelberg (1997)

    Google Scholar 

  4. Camenisch, J., Michels, M.: Proving in Zero-Knowledge that a Number is the Product of Two Safe Primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 107. Springer, Heidelberg (1999); BRICS Technical Report RS-98-29

    Google Scholar 

  5. Camenisch, J., Stadler, M.: Efficient Group Signatures for Large Groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 465–479. Springer, Heidelberg (1997)

    Google Scholar 

  6. Chan, A., Frankel, Y., Tsiounis, T.: Easy come-easy go divisible cash. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 561–575. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Chaum, D., van Heijst, E., Pfitzmann, B.: Cryptographically Strong Undeniable Signature, Unconditionally Secure for the Signer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 204–212. Springer, Heidelberg (1992)

    Google Scholar 

  8. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

    Google Scholar 

  9. Cramer, R., Damgard, I.: Zero-Knowledge Proofs for Finite Field Arithmetic or: Can Zero-Knowledge be for Free? In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p. 424. Springer, Heidelberg (1998) (to appear)

    Google Scholar 

  10. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p. 13. Springer, Heidelberg (1998) (to appear)

    Google Scholar 

  11. Damgard, I.: Practical and Provably Secure Release of a Secret and Exchanges of Signatures. Journal of Cryptology 8(4), 201–222 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Di Crescenzo, G., Okamoto, T., Yung, M.: Keeping the SZK-Verifier Honest Un conditionally. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 31–45. Springer, Heidelberg (1997)

    Google Scholar 

  13. ElGamal, T.: A Public-Key Cryptosystem and a Signature Scheme Based on Di-screte Logarithms. IEEE Transactions on Information Theory IT-31(4), 469–472 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of Identity. Journal of Cryptology 1, 77–94 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fujisaki, E., Okamoto, T.: Statistical Zero-Knowledge Protocols to Prove Modular Polynomial Relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)

    Google Scholar 

  16. Goldreich, O., Micali, S., Wigderson, A.: Proofs that Yield Nothing But their Validity and a Methodology of Cryptographic Protocol Design. In: Proceedings of Foundation of Computer Science 1986, pp. 174–187 (1986)

    Google Scholar 

  17. Kilian, J., Petrank, E.: Identity Escrow. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p. 169. Springer, Heidelberg (1998)

    Google Scholar 

  18. National Institute of Standards and Technology, NIST FIPS PUB 186, Digital Signature Standard, US Department of Commerce (May 1994)

    Google Scholar 

  19. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  20. Nyberg, K., Rueppel, R.A.: Message Recovery for Signature Schemes Based on the Discrete Logarithm Problem. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 182–193. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  21. Okamoto, T.: An efficient divisible electronic cash scheme. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 438–451. Springer, Heidelberg (1995)

    Google Scholar 

  22. Pedersen, T.: Non-Interactive and Information Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)

    Google Scholar 

  23. Schneider, B.: Applied Cryptography, 2nd edn. John Wiley & Sons, Inc., Chichester (1996)

    Google Scholar 

  24. Schnorr, C.: Efficient Signature Generation for Smart Cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

    Google Scholar 

  25. Stadler, M.: Publicly Verifiable Secret Sharing. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nguyen, K.Q., Bao, F., Mu, Y., Varadharajan, V. (1999). Zero-Knowledge Proofs of Possession of Digital Signatures and Its Applications. In: Varadharajan, V., Mu, Y. (eds) Information and Communication Security. ICICS 1999. Lecture Notes in Computer Science, vol 1726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47942-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47942-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66682-0

  • Online ISBN: 978-3-540-47942-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics